

Professor Amit Goyal
SUNY Distinguished Professor & SUNY Empire Innovation professor
State University of New York (SUNY) at Buffalo
USA

Date: November 12th, 2021

The “Albert Einstein” World Award of Science

The World Cultural Council

Re: Nomination of Prof. Amit Goyal for the 2022 “Albert Einstein” World Award of Science

Dear 2022 Members of the World Cultural Council Interdisciplinary Committee:

It is my distinct pleasure to nominate of Prof. Amit Goyal for the 2022 “Albert Einstein” World Award of Science. I am the recipient of the 2019 “Albert Einstein” World Award of Science. I would like to nominate Prof. Amit Goyal specifically for *“Pioneering research and transformative contributions to the field of applied high temperature superconductivity, including fundamental scientific advances and technical innovations enabling large-scale applications of these novel materials world-wide with truly significant societal impact”*.

The *Nobel Prize* winning discovery of high-temperature superconductivity (HTS) by Bednorz and Müller in 1986 triggered an enormous flurry of research and development world-wide, sparked by the tremendous technological and energy-related potential of these materials, slated to be in many tens of Billions of dollars per year at full penetration and maturity. However, in order for all these large-scale applications to be realized, one needed *kilometer-long, flexible superconducting wires that carried millions of Amps of current per unit cross-section and at a cost similar to the cost of plain copper wire*. Since grain boundaries with misorientations larger than 4 ° were barriers to supercurrent flow, essentially mile-long, single-crystal wires were needed to be fabricated at a price/performance metric of standard copper wire that one can buy at the hardware store. This seemingly *impossible* technical challenge quickly became the **1st holy-grail in the field of applied HTS world-wide**.

Prof. Goyal’s inventions, provide the *only* known routes to fabricate and address this *holy-grail* and realize such single-crystal-like high temperature superconducting wires at a performance/price metric potentially comparable or superior to copper wire. The first of these was the *Rolling-Assisted-Biaxially-Textured-Substrates (RABiTS) technology* for fabrication of mile-long, single-crystal-like HTS wire. Dr. Goyal’s invention and subsequent innovations R&D led to the development and commercialization of this RABiTS technology world-wide. The RABiTS process uses scalable, thermomechanical, routes to fabricate single-crystal-like substrates upon which

epitaxial deposition of buffer and device layers is performed. Since this invention, Dr. Goyal has made numerous additional inventions to truly make the RABiTS approach practical for commercial scale-up. American Superconductor Corporation (AMSC), the leading manufacturer of high temperature superconducting wire worldwide, chose to terminate production of the powder-in-tube (1st generation high temperature superconducting wire upon which the company was established), licensed the 2nd generation RABiTS technology, and established a factory for manufacturing high temperature superconducting wire based on the process. AMSC has filled some the world's largest orders of millions of meters HTS Amperium wire – AMSC's proprietary second-generation, high-temperature superconducting wire, based on the RABiTS process. Dr. Goyal has received numerous awards for this technology, including an *R&D100 Award* in 1999 and has over 60 issued patents related to all aspects of this technology.

The second technology he developed was the *LMOe (LaMnO₃)-enabled IBAD-MgO HTS wire technology*. He and his group invented the key LMOe layer which enables scaling-up and fabrication of Km-long HTS wires using the IBAD process to realize single-crystal-like wires. The LMOe buffer layer innovation was a critical technology crucial for scale-up of this second and only other key method to fabricate such high-performance, single-crystal-like HTS wires. Working closely with SuperPower, the second largest manufacturer of high temperature superconducting wire in the United States, Dr. Goyal and his collaborators at ORNL established a RMnO₃, R_{1-x}A_xMnO₃, buffer layer technology on IBAD MgO; wherein R includes an element selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y, and A includes an element selected from the group consisting of Be, Mg, Ca, Sr, Ba, and Ra (US Patent 6,764,770). Deposition of RMnO₃, R_{1-x}A_xMnO₃, are very robust buffer layers chemically and structurally and it is possible to deposit them at very high rates using reactive sputtering; thereby making the IBAD-MgO process scalable to long-lengths. Of these buffer possibilities, the LaMnO₃ (LMO) buffer technology (called LMOe-Enabled, IBAD-MgO wire) has become the most widely used composition, followed by La-Sr-Mn-O buffer technology. SuperPower Inc. has licensed this transformative technology based on this macro-invention and is now fabricating kilometer-long wires based on this process. Dr. Goyal and other team members, including those from SuperPower, received an *R&D100 Award* for this technology in 2007.

Once, mile-long, single-crystal-like wires were fabricated using the technologies described above, the *second HTS Grand Challenge* or the **2nd holy-grail in the field of applied superconductivity** emerged. This was the need to dramatically improve the performance of wires in high-applied magnetic fields since most large-scale applications of HTS materials were in high-applied magnetic fields.. It was shown elegantly that this could ideally be accomplished using heavy-ion irradiation that penetrated the superconductor and produced amorphous, non-superconducting, nanoscale damage tracks at nanoscale spacing, which dramatically improved properties. These non-superconducting, nanocolumns at nanoscale spacings “pinned” the magnetic flux (also nanoscale and at nanoscale spacings) which enhanced the current carrying ability of the superconductor in high-applied magnetic

fields. The challenge in the field or **2nd holy-grail in the field of applied superconductivity** was to accomplish such a modification without using the heavy-ion irradiation which was impractical to scale-up, was prohibitively expensive, and also rendered the metallic layers in the wire radioactive. Prof. Goyal invented and developed nanoscale, non-superconducting vortex-pinning columns via a low-cost, phase-separation and strain-induced self-assembly technology. This *Phase-Separation and Strain-Driven Self-Assembly process* is the only way to practically realize nanocolumns of non-superconducting materials at nanoscale spacings to realize optimal magnetic flux-pinning in the temperature regime for applications (20K-77K) in high-applied magnetic fields *without adding cost* and without using heavy-ion radiation. The *world's highest performance HTS wires* in high-applied magnetic fields are enabled by this *truly remarkable nanoengineering and nanotechnology innovation*. This is one of the few *scaled-up, high-technology applications of nanotechnology*.

An additional challenge in the field was the need to transition from a tape-like geometry to “round wire” in order to be easily bent and twisted for reducing energy losses in alternating current applications. This was *another holy-grail* in the field. Dr. Goyal developed a new process to fabricate single-crystal, “round” wire via epitaxial growth of the yttrium-barium-copper oxide-type superconductor on Structural, Single-Crystal, Faceted, Fibers (SSIFFSTM) of aluminum oxide. Presently, this discovery represents the primary route to fabrication of a “round” high temperature superconducting wire for operation at liquid N₂ temperatures. This macro-invention is also referred to as 3rd generation high temperature superconducting wire technology (US Patents 8,481,460 and 8,227,082). Goyal received an *R&D100 Award* for this technology in 2009.

Essentially ALL HTS companies in the US (American Superconductor, SuperPower, MetOx) and world-wide employ one of Dr. Goyal's innovations mentioned above to fabricate kilometer-long, single-crystal-like, high-performance HTS wires. The technology of self-assembly to create nanoscale defects is also being employed world-wide.

The RABiTS process invented by him is presently being scaled-up by the two largest companies in the HTS world - American Superconductor Corporation (the largest HTS company in the USA), by BASF/Deutsche Nanoschicht GmbH in Germany. The LMOe-enabled HTS wire is being scaled-up by SuperPower and MetOx in the US; SuNAM in South Korea; SuperOx in Russia and Japan; Fujikura in Japan; and Shanghai Superconductor Technology and Shanghai Creative Superconductor in China. Many of these companies are also using the strain-driven, self-assembly technology for producing nanoscale columnar defects in these HTS wires.

These HTS wires are enabling all kinds of large-scale applications which could have a multi-billion dollar societal impact. Only some of these are very briefly summarized below:

- a) **Nuclear Fusion:** The HTS wires allow very high magnetic fields to be reached and this can contain the nuclear plasma so that companies like Commonwealth Fusion Systems were recently incorporated to

realize *commercial fusion*. Commercial fusion has been a human dream for decades and is only now close to being realized due to these HTS wires. See – <https://www.cnbc.com/2021/09/08/fusion-gets-closer-with-successful-test-of-new-kind-of-magnet.html>. This reports on the fabrication of a 20 Tesla magnet using HTS wires (fabricated using technology described previously) that will essentially enable commercial nuclear fusion. This may indeed solve the world's energy problems in an environmentally-friendly manner and one could envisage a nuclear fusion as part of the electric grid.

b) **Transmission of Electrical Power:** AC and DC cables for transmitting large amounts of power. More electricity is lost in the transmitting power in the United States than is consumed in the entire continent of Africa! Superconducting transmission cables have zero losses and can carry very large amount of electric power. While there have been many superconducting cable installations around the world, see link for a recent new one Chicago - <https://www.nexans.com/newsroom/news/details/2021/09/2021-09-02-pr-nexans-installs-and-commissions-superconducting-cable-for-chicago-resilient-electric-grid-project.html>. The superconducting cable is also smart and provides for a resilient electric grid. A nice and detailed YouTube video on this cable technology can be viewed here - <https://www.youtube.com/watch?v=D3BSJ4HNMCg>. This AC cable in Chicago is made using HTS wire supplied by AMSC which fabricates HTS wire using the RABiTS technology. Similarly, DC cables are for long-distance transmission of very large amounts of power. They are expected to be used for transmitting the DC power generated by renewables such as large solar or wind installations to where the power will actually be consumed. For example, in the United States (US), Solar and Wind installations are in central US and power demand is highest along the west and east coast.

c) **Improving Energy Efficiency:** HTS motors, transformers, fault-current limiters, etc. Fault-current limiters are essential for the electric power grid world-wide and HTS fault current limiters are a niche technology. Here is a video of AMSC's HTS fault current limiters made using the RABiTS-based HTS wires.

d) **Energy Generation:** HTS generators including those in off-shore wind turbines. Here is a link to the installation of superconducting wind generator - <https://www.evwind.es/2019/11/22/first-superconducting-wind-energy-generator-successfully-tested/71971>. Superconducting wind generators can produce twice the power of conventional wind generators.

e) **Defense Applications:** All-electric ships and planes. Here is a video of an HTS motor by AMSC made using RABiTS HTS wire for a Navy application - <https://www.powermag.com/superconductor-motor-for-navy-passes-full-power-test/>.

For his numerous contributions to help realize the vision of the 1987 Nobel Prize in Physics for High-Temperature Superconductors, Prof. Goyal was inducted into the highly prestigious *United States National Academy of Engineering* for his contributions to the field of applied high-temperature superconductivity and was cited for “*materials science advances and contributions enabling commercialization of high-temperature superconducting*

materials”. He has received 10 R&D100 awards. Given by the R&D100 magazine, the R&D100 awards are widely regarded as the “*Osars for innovation*”. In addition, he was also named by R&D Magazine as the *2010 Innovator of the Year* for his collective innovations to the field of high-temperature superconductors enabling their commercialization.

He is presently a *SUNY Distinguished Professor* and a *SUNY Empire Innovation Professor* at the University at Buffalo (UB). He was the *Founding Director* (from January 2015 to July 2021) of the *internally-funded*, Research and Education in Energy, Environment and Water (RENEW) Institute, a unique, multidisciplinary institute spanning seven schools and colleges at the UB and dedicated to research and education on globally pressing problems in energy, environment and water. One of the most expansive initiatives launched by UB or SUNY-Buffalo in recent years, RENEW (Research and Education in eNergy, Environment and Water) is a multidisciplinary institute that harnesses the expertise of more than 100 faculty members across seven schools and colleges and had 19 additional faculty lines to add new faculty. During his 6.5 yr term as Founding Director, he hired 15 multidisciplinary faculty and 4 senior scientists; and during his term as Director, the RENEW Institute directly or indirectly contributed to over 600 publications and over 400 presentations and garnering of over \$50 Million in external funds in the important areas of Energy, Environment and Water. The Institute is now poised to have a transformational impact. For his contributions in establishing the RENEW Institute, he was awarded the *UB President's Medal*, first presented in 1990, recognizes “*Outstanding scholarly or artistic achievements, humanitarian acts, contributions of time or treasure, exemplary leadership or any other major contribution to the development of the University at Buffalo and the quality of life in the UB community.*” This is highest recognition given at the university.

He is now founding a new, “*externally-funded*” research center of excellence funded by the Department of Energy Conservation titled - Initiative for Plastics Recycling & Innovation, at the University at Buffalo (UB) as Founding Director. This is an externally-funded, multidisciplinary initiative at a funding level of \$1,500,000.00/yr for 6 years to address the critical problem of Plastics Recycling that has critical implications for climate change and impact.

Previously he was *Corporate Fellow and a Battelle Distinguished Inventor* at ORNL and also the *Chair of the Corporate Fellows Council* at ORNL. He has authored or co-authored over 360 publications. He has written over 45 invited papers and book chapters, and has also co-edited six books on high temperature superconductors. He has given over 25 plenary or keynote presentations and ~ 200 invited presentations in national and international conferences. An analysis of citations and papers published between 1998-2008 in the field of high-temperature superconductivity listed the top 20 authors worldwide in terms of total number of citations and total number of published papers (<http://sciencewatch.com/ana/st/hts/authors/>); *Dr. Goyal was the most cited author on this list world-wide* (total of 1988 authors) and *had the highest number of papers* (published in this timeframe for the United States). Dr. Goyal has 88 issued patents comprising 70 US patents and 18 international patents. In addition, he has over 20 US and International patents pending. *Most of his 88 issued patents have been licensed to companies whose products are making significant*

societal impact.

In 2011, he was awarded the prestigious E. O. Lawrence Award from the United States Department of Energy (USDOE) for “Energy Science & Innovation”. ***The E. O. Lawrence award is a highly prestigious award given on behalf of the President of the United States by the US Department of Energy Secretary.***

This award in the inaugural category of Energy Science and Innovation recognizes transformative accomplishments related to USDOE's investments in "use inspired" scientific research to develop new understanding, methodologies and materials required to advance, promote, and enable energy innovation. The Ernest Orlando Lawrence Award was established in 1959 in honor of the Nobel winning scientist who helped elevate American

physics to world leadership. He was also invited by U. S. Department of Energy Secretary Steven Chu to give the *first ever* science lecture at the Department of Energy based on his work that led to the E. O. Lawrence Award. Dr. Goyal was introduced by Secretary Chu before his lecture. This talk is on YouTube and can be viewed on *science cinema* at the link - <https://www.osti.gov/sciencecinema/biblio/1043697>. A recent interview by Superconductor Week, a leading publication in the field of superconductivity summarizes Prof. Goyal's personal scientific and technological innovations - <https://www.superconductorweek.com/2021/04/13/an-interview-with-amit-goyal/>.

In 2012, he was awarded the prestigious World Technology Award in the Category of “Materials”. The prestigious World Technology Awards are presented by the World Technology Network (WTN) in association with Time, Fortune, CNN, Science/AAAS and MIT’s Technology Review Magazine with a stated goal to recognize “individuals and companies for innovations of the greatest long-term significance” in their respective fields.

For his inventions and transformative contributions to the field of HTS, Dr. Goyal was selected by ***R&D Magazine as the 2010 Innovator of the Year*** for transformative contributions to this field of high-temperature superconductors. He was honored for his pioneering research contributions to both the fundamental materials science and for innovations that allow for transition of scientific discoveries from the laboratory to the marketplace. Previous awardees of the *R&D Magazine*’s Innovator of the Year Award include Larry Page (co-founder of Google), Elon Musk (Inventor of PayPal, Tesla Motors), and Dean Kaman (inventor of the Segway).

His scientific and technological contributions have had a *major and profound transformational impact* on the field of HTS. The influence of his work is felt not only in America, but world-wide. National programs on high temperature superconductivity in Japan, Korea, Germany, the United Kingdom, Spain, Italy, France, Belgium, China, etc. are using his methods, discoveries, and inventions to fabricate long-lengths of high-performance superconducting wire for large-scale applications of HTS. His work has *transformed* the field of Applied Superconductivity and today all companies world-wide fabricating high-performance superconducting (HTS) wires use atleast one of his innovations to fabricate the high-performance HTS wires. Large-scale applications high temperature superconductors are in many Billions of dollars.

Dr. Goyal's innovations are now realizing the vision for societal benefits that led to the flurry of excitement, leading to the Nobel Prize in Physics in 1987 for discovery of HTS materials. His innovative research is slated to bring true benefit and well-being to mankind with the numerous applications with major societal impact with potential for true benefit and well-being to mankind. He is ideally suited to receive the 2022 "Albert Einstein" World Award of Science.

Please do not hesitate to contact me for any further information.

Best regards.

Zhong Lin (Z.L.) Wang, PhD

Hightower Chair in Materials Science and Engineering

Regents' Professor

Georgia-Tech. University

Director and Chief Scientist

Beijing Institute of Nanoenergy and Nanosystems Chinese

Academy of Sciences

E-mail: zlwang@binn.cas.cn or zhong.wang@mse.gatech.edu

Personal website: <http://www.nanoscience.gatech.edu>

Date: November 9th, 2021

To: The “Albert Einstein” World Award of Science Committee

Prof. Jagdish (Jay) Narayan
John Fan Family Distinguished
Chair Professor
Materials Science and
Engineering Department
Campus Box 7907
Raleigh, NC 27695-7907

919.515.7874 (phone)
919.515.7724 (fax)
J_NARAYAN@ncsu.edu
<http://www.mse.ncsu.edu/>

Re: Nomination of Prof. Amit Goyal for The “Albert Einstein” World Award of Science

Dear “Albert Einstein” World Award of Science Committee:

It is indeed a distinct pleasure to provide the strongest support for the nomination of Dr. Amit Goyal for the “Albert Einstein” World Award of Science. I have known Dr. Goyal for over two decades and am familiar with his leading work in the area of applied high temperature superconductors. The “Albert Einstein” World Award of Science recognizes scientific and technological research and development that has the potential for true benefit and well-being to mankind. Dr. Goyal’s work in the area of applied superconductivity epitomizes this goal as elaborated below.

Motivated by the vision of the 1987 Nobel Prize in Physics for the discovery of high-temperature superconductivity by Bednorz and Müller in 1986 and the enormous, envisioned potential applications of these materials, Dr. Goyal’s career has been driven by the *singular goal* to make the numerous envisioned applications of high-temperature superconductors a reality. His research has been defined by solving whatever *obstacles or fundamental challenges* presented themselves along the way to reach this goal. This has required him to *develop expertise and specialize in different scientific areas and adapt information from other areas* to solve fundamental problems that emerged along the way. Once a particular fundamental challenge was solved he moved onwards and addressed the next obstacle in the path of achieving the ultimate goal.

The ultimate goal of his research was to realize fabrication of high-performance, flexible superconducting wires for all the envisioned large-scale applications of high-temperature superconductors (HTS). Based on his leading and defining fundamental research on properties and characteristics of interconnected grain boundary networks in all classes of polycrystalline HTS materials, he concluded that the performance of polycrystalline superconductors was directly related to percolative current flow through low-angle, GB networks and that to realize truly high-performance HTS wires needed for all large-scale applications, essentially single-crystal, flexible, mile-long HTS wires were needed. He did this work on studying characteristics of interconnected grain boundary networks by adapting a fledgling electron microscopy technique at the time called Electron Backscatter Kikuchi Diffraction (EBKD). His work on HTS materials using this technique was also one of the first significant and impactful use of this technique to gain knowledge on a fundamental problem.

The 1987 Nobel Prize in Physics created enormous excitement globally and resulted in initiation of significant research and development activities world-wide, motivated by the numerous potential applications of these materials, which were slated to be in many tens of Billions \$.

NC STATE UNIVERSITY

For all these large-scale applications to be realized, one needed mile-long, flexible superconducting wires that carried extremely high supercurrents and the wire had to be made at a cost that was similar to the cost of plain copper wire, a seemingly *impossible goal scientifically*. *Dr. Goyal's research over that last two and a half decades has been focused on addressing this specific goal and his research and innovations have led to highly promising approaches to fabricate high-performance HTS wires to enable widespread commercialization world-wide*. His work has addressed key fundamental issues and grand challenges in applied superconductivity.

His research and innovations solved the seemingly impossible goal of fabricating "*single-crystal, flexible superconducting HTS wires by the mile*" which were required for having high-performance HTS wire that could carry millions of Amps of supercurrent per unit cross-section. Dr. Goyal's innovations provide the *only* known routes to fabricate and realize long-lengths of single-crystal-like high temperature superconducting wires at a performance/price metric potentially comparable or superior to copper wire. The first of these inventions is the *Rolling-Assisted-Biaxially-Textured Substrates (RABiTS)* process for making large-area, flexible, near single-crystal substrates. The RABiTS process uses scalable, thermomechanical, routes to fabricate single-crystal-like substrates upon which epitaxial deposition of buffer and device layers is performed. American Superconductor Corporation (AMSC) located in Massachusetts, the leading manufacturer of high temperature superconducting wire world-wide, chose to terminate production of its 1st generation, powder-in-tube based superconducting wire (high temperature superconducting wire upon which the company was established), licensed the RABiTS technology, and established a factory for manufacturing high temperature superconducting wire based solely on the process. Another technology that can realize a long single-crystal-like wire is the Ion-Beam-Assisted-Deposition (IBAD) process invented in Japan and further developed at Stanford, Los Alamos National Laboratory, and SuperPower Inc. Working closely with SuperPower (located in New York), the second largest manufacturer of high temperature superconducting wire in the United States, Dr. Goyal's research established a buffer technology that enables this process to become practically scalable. This is the LMOe-enabled, IBAD MgO technology. SuperPower Inc. has licensed this *transformative* technology based on Goyal's innovations and is now fabricating kilometer-long wires routinely based on this process for diverse large-scale device applications.

Another major issue in the field of HTS was to significantly enhance the vortex-pinning or flux-pinning for applications in high-applied magnetic fields. It was shown elegantly that this could ideally be accomplished using heavy-ion irradiation which produced amorphous, nanoscale damage tracks at nanoscale spacing, which dramatically improved properties. However, the challenge in the field was to accomplish such a modification without using the heavy-ion irradiation which was impractical to scale-up. Dr. Goyal developed a practical scalable process which accomplished this using strain-driven, 3D self-assembly of non-superconducting, nanoscale oxides during HTS film growth to essentially achieve an identical microstructural modification. This process dramatically improved properties of high temperature superconducting wires, especially in high-applied magnetic fields. This technology is now being used world-wide to fabricate the highest performance, high-temperature superconducting wires enabled via self-assembly of non-superconducting columnar nanostructures.

NC STATE UNIVERSITY

His research related to fabricating "*high-performance, single-crystal, flexible superconducting HTS wires by the mile*" required adaption of knowledge from numerous fields:

- *Ceramics*: HTS materials are ceramics and classic properties of ceramics such as brittleness and cracking had to be dealt with in making long, flexible wires.
- *Crystallographic texture development*: His research went deep into this field and he created for the very first time, essentially single-crystal-like metallic foils with no high-angle grain boundaries using thermomechanical processing and dictating the as-rolled texture and then the annealed texture.
- *Metallurgy*: He adapted roll-to-roll rolling techniques to create metallic foils and also advanced how the teste rolling operations had to be performed.
- *Electron microscopy*: As mentioned previously, he first used the relatively new electron microscopy technique, Electron Backscatter Kikuchi Diffraction (EBKD), to study grain boundary networks in polycrystalline superconductors. He also extensively applied this technique to study grain boundaries in the textured metallic foils, and on heteroepitaxial buffers layers and superconductor layers on them. He used a combination of scanning transmission electron microscopy and Secondary Ion Mass Spectrometry (SIMS) to study diffusion of impurities from the metallic substrate to the superconductor and from the superconductor to the metallic substrate to optimize thickness of all layers.
- *Heteroepitaxial thin-film growth*: He adapted thin-film deposition using chemical solution deposition, physical vapor deposition (using laser ablation, e-beam evaporation and sputtering) and chemical vapor deposition techniques to create heteroepitaxial multilayered substrates and hetero-epitaxial superconductors on these multilayered substrates. He developed innovative new ways to realize heteroepitaxy of multicomponent oxides on highly reactive metal and allow tapes.
- *High-temperature, roll-to-roll deposition of heteroepitaxial layers*: High-temperature, roll-to-roll, heteroepitaxial deposition had never been done or demonstrated in the past for any material. Even in the Silicon Valley, all applications were developed for room-temperature roll-to-roll depositions on a moving web. These applications were for low-tech applications such as beer bottle labels. He had to adapt existing knowledge of thin-film deposition, mechanical deformation of flexible metallic webs at high-temperature and engineering aspects to prevent pre- or post- deposition on the web to realize high-quality, heteroepitaxial deposition by the mile.
- *Chemical engineering*: Principles of chemical engineering were adapted for deposition chamber design particularly for chemical vapor deposition.
- *Chemistry*: Standard chemistry sol-gel techniques were adapted for fabrication of los-cost layers such as heteroepitaxial buffers layers and superconductor layers.
- *Electrical Engineering*: To measure transport properties of superconductors, standard electrical engineering techniques were adapted to measure critical current densities of HTS materials as a function of magnetic field (0-10T), magnetic field orientation (0-360°) and measurement temperature (from 90K – 42.K). Electrical engineering also guided the development of metallic substrates with low AC losses and combined with metallurgy and rolling techniques (mechanical engineering) lead to the creation of crystallographically textured, non-magnetic NiW tapes or substrates for growth of superconductors.

NC STATE UNIVERSITY

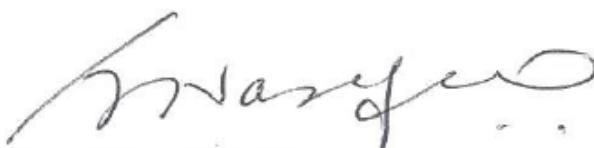
- *Nanotechnology*: Multilayered substrates comprised of several buffer layers on metallic tapes had buffer layers which were all in tens of nanometers. So, development of the right buffer stack involved dealing extensively with nanotechnology. He also developed the technique and process of strain-driven self-assembly to realize a nanoscale modification of the superconductor into non-superconducting columns at nanoscale spacing separated by nanoscale dimensions for optimizing the current carrying ability of HTS wires in applied magnetic fields.
- *Solid-state and condensed matter physics*: This field forms the central basis of all work in the area of high-temperature superconductors. From supercurrent transport across individual grain boundaries to assemblage of grain-boundaries to vortex-pinning within a grain, all of this forms the basis of the work related to superconductors.

ALL companies in the US and around the world are presently using atleast one of Dr. Goyal's innovations to fabricate long-lengths of high-performance superconducting wires for large-scale applications. These include (1) *Commercial nuclear fusion enabled by HTS wires* which allowed very high-field magnets to contain the plasma to small volumes. It could truly solve the world's energy problem in a sustainable and environmentally friendly way; (2) *Superconducting generators enabled by HTS wires* in off-shore wind-turbines allow for almost twice the power generation compared to non-HTS turbines and will have major impact in renewable energy generation; (3) *Superconducting magnetic energy storage systems (SMES) enabled by HTS wires* allows storing large amounts of energy; (4) *Superconducting transmission cables enabled by HTS wires* allow for efficiently transmitting large amount of power. Maybe essential in large power usage areas to transmit power from where it is generated to where it is consumed; (5) *HTS high-field magnets enabled by HTS wires* have all kinds of other societal applications from MRI to NMR to fundamental physics; (6) *The electric power grid has many applications (motors, transformers, fault-current limiters) that are enabled by HTS wires* and (7) *drive-trains for all-electric ships and planes enabled by HTS wires*.

The fabrication of these high-performance HTS wires is now making possible to realize *nuclear fusion* since much higher fields can be generated to contain the plasma for fusion. This also results in a much smaller and orders of magnitude cheaper fusion reactor than the International Thermonuclear Experimental Reactor (ITER) project comprising 35 nations and costing over many tens of Billion's of dollars (<https://www.ITER.org>). A company funded by leading investors Jeff Bezos, Bill Gates, Mark Zuckerberg, etc. and spun out from MIT, is demonstrating fabrication of such small and cheap fusion reactors (<https://cfs.energy>) that are enabled by these HTS wires. Once this demonstration is done, these reactors could potentially address the worlds energy needs in a renewable manner.

Each of the above listed HTS applications is expected to be in many Billions of dollars when fully matured. For each of these applications, long-lengths of high-performance superconducting wire are essential and these are *being made using one or more of Dr. Goyal's innovations*.

NC STATE UNIVERSITY


In 2011, he was awarded the prestigious *E. O. Lawrence Award* from the United States Department of Energy (USDOE) in the inaugural category of "*Energy Science & Innovation*". The E. O. Lawrence award is a highly prestigious award given on behalf of the *President of the United States* by the *US Department of Energy Secretary*. This award in the inaugural category of Energy Science and Innovation recognizes transformative accomplishments related to USDOE's investments in "use inspired" scientific research to develop new understanding, methodologies and materials required to advance, promote, and enable energy innovation.

He is regarded a leader in this field of applied HTS world-wide and his work has provided the US with global prestige and leadership. He founded the RENEW Institute at the University at Buffalo which is developing solutions to the environmental issues, pollution, clean water, global climate change, renewable energy and sustainable development and served as its Director from 2015-2021. For his contributions, he was awarded, the University's President's Medal in 2019. The UB President's Medal, recognizes "*outstanding scholarly or artistic achievements, humanitarian acts, contributions of time or treasure, exemplary leadership or any other major contribution to the development of the University at Buffalo and the quality of life in the UB community.*" He is now founding an externally-funded, research center of excellence at a funding level of \$1,500,000.00/yr for 6 years to address the critical world-wide problem of Plastics Recycling that has critical implications for climate change and societal impact.

Dr. Goyal was inducted into the National Academy of Engineering in 2018, cited for "*materials science advances and contributions enabling commercialization of high-temperature superconducting materials*".

In closing, Dr. Goyal is *ideally* suited for the "Albert Einstein" World Award of Science. His work has been *transformative* to the HTS field and his work is making and slated to make significant societal impact.

Best regards.

Prof. Jagdish Narayan

NAE, NAI, INAS

The John C. C. Fan Family Distinguished Chair in Materials Science

ORNL Distinguished Visiting Scientist and Director

NSF Center for Advanced Materials and Smart Structures

Department of Materials Science and Engineering

EB I, Suite 3030, Centennial Campus

North Carolina State University

Raleigh, NC 27695-7907.

T: (919) 515-7874; Fax: (919) 515-7642; E-mail: J_NARAYAN@NCSU.EDU

University at Buffalo

Department of Chemical
and Biological Engineering

School of Engineering and Applied Sciences

Thomas Thundat, SUNY Empire Innovation Professor
Department of Chemical & Biological Engineering
School of Engineering & Applied Sciences
310 Furnas Hall
Buffalo, NY 14260-4200

Voice: (716) 645-3209

Fax: (716) 645-3822

Email: tgthunda@buffalo.edu

Nov. 09, 2021

The “Albert Einstein” World Award of Science
The World Cultural Council

Re: Nomination of Prof. Amit Goyal for the “Albert Einstein” World Award of Science, 2022

Dear Members of the World Cultural Council Interdisciplinary Committee:

I am delighted to support the nomination of Prof. Amit Goyal for the “Albert Einstein” World Award of Science. I have known Prof. Goyal since the early nineties when we were both at the Oak Ridge National Laboratory. His research has addressed key scientific challenges in the field of high-temperature superconductors and his innovations and technologies have enabled world-wide development and commercialization of large-scale, high-temperature superconductors applications.

His professional career has been devoted to establishing a fundamental understanding of scientific issues dictating or limiting the performance of high-temperature superconductors (HTS) and subsequently finding practical, innovative solutions which allow overcoming these limitations to enable realization of large-scale, commercial applications of these novel materials. He has made numerous important contributions to the materials science aspects of high temperature superconductors that have *altered* and *transformed* the research and development in this field. His work can be characterized as highly creative and innovative and which has continually challenged the HTS field with new ideas and concepts. A unique characteristic of his contributions is that he has worked at the *intersection of science and technology*. There are many aspects of his work that are very *fundamental* in nature, yet many that are very *applied* in nature. Over the years, he has tackled complicated problems in diverse areas such as *ceramics, metallurgy, solid-state and condensed-matter physics, electron microscopy, crystallographic texture development, heteroepitaxial thin-film growth, high-temperature roll-to-roll deposition, nanotechnology and various topics in electrical, chemical and mechanical engineering*.

The discovery of high-temperature superconductivity (HTS) by Bednorz and Müller in 1986 generated enormous excitement and research and development world-wide on these materials due to the tremendous potential applications of these materials and how they could change the world we live in. It resulted in a Nobel Prize in Physics in 1987. For all these large-scale applications, mile-long, flexible superconducting wires that can carry millions of Amps of current per unit cross-section were needed. Moreover, these wires had to be fabricated at a cost similar to that of plain copper wire that is available everywhere. Since mile-long wires are invariably polycrystalline, meaning they have many many grains, the properties of the junctions of these grains were important. It was determined that grain boundaries with misorientations larger than 4° were

barriers to supercurrent flow, essentially mile-long, single-crystal wires were needed to be fabricated at a price/performance metric of standard copper wire. This seemingly impossible technical challenge quickly became the 1st grand challenge in the field of applied HTS world-wide. Dr. Goyal's multidisciplinary research over that last three decades has been focused on addressing this central issue and his fundamental research and resulting innovations have led to highly promising approaches to fabricate such a wire to enable widespread commercialization world-wide. Dr. Goyal's innovations are now helping realize the vision for societal benefits that led to the flurry of excitement, leading to the Nobel Prize in Physics in 1987 for discovery of HTS materials (*the theory of HTS materials is still not known and hence applications significantly motivated the 1987 Nobel*).

Dr. Goyal's early work focused on advanced ceramic-based, melt-processing of the ceramic superconductors to fabricate high-performance materials. Subsequently his focus shifted towards determining the *current-limiting mechanisms* in various classes of high temperature superconducting, polycrystalline materials that were being considered as prospects for fabricating long-lengths of flexible high temperature superconducting wires. He applied a new advanced electron-microscopy technique in the early nineties called Electron Backscatter Kikuchi Diffraction to study grain boundary (GB) character of GB networks to learn about percolative current flow in polycrystalline HTS materials. This was the first advanced application of this new microscopy technique. His research findings in each of the materials examined, namely, melt-processed wires, powder-in-tube tapes, and thick films on flexible tapes, had a *profound* influence on the field. Contrary to the widely held hypothesis that the grain boundaries in some of these materials were special and not weak-linked, Dr. Goyal's work showed that this was not the case. The best superconducting properties in each class of materials could be explained via percolative current flow through low-angle, GB networks. Since there was no obvious method to control the types of GB's that formed in these materials, none of the existing processes were deemed possible for fabricating long-lengths of high-performance high temperature superconducting wires. Hence, the need for biaxial (and triaxial) texture or "*single-crystal by the mile*" was identified. It became clear that essentially mile-long, single-crystal-like, wires needed to be fabricated from the brittle high-temperature superconducting materials in order to meet the performance requirements for all large-scale applications. In addition, this had to be done using a method that could approach the price/performance metric of standard copper wire in the hardware store. This was a seemingly *impossible goal* since the largest single-crystal grown by man is Si and it is only 18" in dia. and 1.5 long. In addition, it takes a long time to grow this Si crystal and it is a very expensive process. This technical challenge quickly became the *first grand challenge* in the field of applied HTS.

Dr. Goyal then proceeded to look at how crystallographic texture in polycrystalline materials affects grain boundary character of GB networks in polycrystalline materials. His studies determined that a significant biaxial or triaxial crystallographic texture was necessary to obtain a high-fraction of percolatively connected low-angle boundaries that did not act as barriers to supercurrent flow. It was determined that crystallographic textures as sharp as 5 degrees in all three crystallographic directions were needed. Dr. Goyal then proceeded to conduct experiments to determine if such a texture could be achieved by thermomechanical (involving rolling and annealing) processing as this had the potential to be cheap and scalable. Inspired by the aluminum foil in the kitchen, Dr. Goyal began experiments on metals such as Ni and Cu. He discovered that there was a whole distinct, 100-yr old, global field of "crystallographic texture" but which

had never demonstrated such sharp and clean crystallographic textures with texture-modeling indicating that this may be impossible to achieve. Dr. Goyal building on the past work from the texture field with additional innovations demonstrated that such textures can indeed be obtained by thermomechanical processing in large-area substrates (few ft. x mile-long).

Having achieved the above success his attention shifted to translating this sharp crystallographic texture to the superconductor. HTS materials were brittle ceramics and they could not be thermomechanically processed like metals and alloys. So, he started experiments on heteroepitaxial growth of buffer layers and then the superconductor on the single-crystal-like, flexible metal tapes. This led him to the field of thin-film growth and heteroepitaxy. No one had ever grown heteroepitaxial oxides on reactive metal tapes due to severe reactions. He developed methods to do so at temperature and oxygen partial regimes wherein reaction with the metal tapes was not thermodynamically favorable and the desired oxide buffer was stable. His work showed that cube-on-cube heteroepitaxy of buffer oxides and eventually the oxide ceramic superconductor was indeed possible to achieve on the metal tapes. Once the HTS layer formed hetero-epitaxially on the single-crystal-like, buffered, flexible metal tapes, they resulted in HTS tapes having primarily low-angle, GB's and they had high critical current densities in Millions Amps per unit cross-section. He named this process *Rolling-Assisted-Biaxially-Textured-Superconductors (RABiTS)*. He explored thin-film deposition using both chemistry and chemical-engineering-based and physics-based routes including chemical solution deposition, physical vapor deposition (laser ablation, e-beam evaporation and sputtering) and chemical vapor deposition techniques. After the initial demonstration, Dr. Goyal used the concepts of mechanical engineering and metallurgy to make the metallic tapes stronger while still retaining the texture and being single-crystal-like. He used solid-state physics and electrical engineering concepts to reduce AC losses from the metal tape leading to development of Ni-W alloys for substrates.

Once the above laboratory demonstration of a possible route to fabricate was done, the task was to actually scale it all up. There were significant challenges in realizing hetero-epitaxial deposition by the mile since this had to be done at high temperatures (600-800°C) and there are many issues related to unwanted deposition on tapes before they entered the deposition zone and when they exited the deposition zone, deformation of the metal web, interdiffusion between various multi-layer stacks on the tapes, etc. Looking to the Silicon Valley, it was hoped that it would be able to provide the answers for scale-up. Unfortunately, roll-to-roll, heteroepitaxial deposition was never done or demonstrated in the Silicon Valley nor were any systems ever built for roll-to-roll depositions at high temperatures. All of these systems and technology associated with it had to be developed from scratch.

While Dr. Goyal invented and developed the RABiTS process, some researchers in Japan invented a technique called ion-beam-assisted-deposition (IBAD) which relied on the use of ion-assist during deposition to texture YSZ layers on untextured metal alloys. Further work at Stanford University showed when IBAD MgO layers were deposited this could be done more quickly and only a very thin-layer was needed. Various national laboratories (Los Alamos, etc.) around the world demonstrated roll-to-roll scale-up of this technology. However, the MgO layer needed a heteroepitaxial, perovskite buffer layer that could be deposited at high-rates and was robust from a diffusion perspective and limited diffusion of detrimental elements to contaminate the HTS layer. Dr. Goyal's work and that of his colleagues at the Oak Ridge National Laboratory

established a $RMnO_3$, $R_{1-x}A_xMnO_3$, buffer layer technology on IBAD MgO (US Patent 6,764,770). $RMnO_3$, $R_{1-x}A_xMnO_3$, are very robust buffer layers chemically and structurally and it is possible to deposit them at very high rates using reactive sputtering; thereby making the IBAD-MgO process scalable to long-lengths. Of these buffer possibilities, the $LaMnO_3$ (LMO) buffer technology (called LMOe-Enabled, IBAD-MgO wire) has become the most widely used composition, followed by La-Sr-Mn-O buffer technology. *The RABiTS and the LMOe-Enabled, IBAD-MgO are the only routes used by all wire manufacturers around the world to fabricate long-lengths of high-performance HTS wires and Dr. Goyal has received a R&D100 award for both techniques.*

Once fabrication of single-crystal-like, flexible, high-performance superconducting wires was realized, the emphasis in the field shifted to improving the vortex-pinning for the many large-scale, HTS-related applications in high-applied, magnetic fields. It was determined that the ideal defect structures needed in the mile-long, superconducting wires were created when heavy-ions are bombarded into the superconductor which creates nanoscale, amorphous, non-superconducting damage tracks at nanoscale spacing. This defect structure was found ideal for pinning the vortex lattice in high-applied magnetic fields. However, heavy-ion irradiation could not be used to create such a microstructure in mile long wires due to prohibitively high-cost and complexity of scale-up, and also because this would render the metal substrate in the wires radioactive. Hence, the **second grand challenge** in the field of applied superconductivity became creation of this microstructure in the long wires, but without adding any significant cost! Dr. Goyal's invention of the creation of nanoscale, non-superconducting, columnar defects at nanoscale spacing via the method of *phase-separation and strain-induced self-assembly* during formation of the superconducting wires provided an elegant solution to this difficult problem. *Today, the world's highest performance HTS wires in high-applied field applications are being enabled by his innovations.*

Dr. Goyal's macro-inventions, or platform technologies mentioned above (RABiTS, LMOe-Enabled, IBAD-MgO and nanoscale self-assembly of nanocolumns), provide the *only known routes* to fabricate and realize single-crystal-like, high-temperature superconducting wires with very high performance and at a performance/price metric potentially comparable or superior to copper wire. *Essentially ALL companies around the world fabricating long-lengths of high-performance, superconducting wires use one or more of Dr. Goyal's inventions/technologies to fabricate this wire.* These HTS wires are now enabling all kinds of large-scale applications world-wide. Some of these are mentioned below:

a) Nuclear Fusion: The commercial HTS wires fabricated by companies listed above allow very high fields and thus create high-field magnets to contain the plasma so that companies like Commonwealth Fusion Systems were recently incorporated to realize commercial fusion. This is enabling practical nuclear fusion and could truly solve the world's energy problem in a sustainable and environmentally friendly way.

References:

- https://sites.nationalacademies.org/cs/groups/bpasite/documents/webpage/bpa_185099.pdf
- <https://www.psfc.mit.edu/files/psfc/imce/research/topics/sparc/MITSPARCbrouchure.pdf>

- <https://cfs.energy/technology/>

b) Power Transmission: Superconducting cables enabled by HTS wires allow efficiently transmitting large amount of power. There are many HTS cable installations. Some references are provided below:

- https://www.energy.gov/sites/prod/files/oeprod/DocumentsandMedia/cable_overview2.pdf
- <http://www.superpower-inc.com/content/hts-transmission-cable>
- https://www.nexans.us/eservice/US-en_US/navigatepub_158895_-34926/Nexans_to_provide_superconducting_cables_for_urban.html;
- Japan - <https://iopscience.iop.org/article/10.1088/1742-6596/1293/1/012066/pdf>;
- China - <https://www.sciencedirect.com/science/article/abs/pii/S0011227520301223>

Long-distance transmission of power using DC Superconducting cables is now becoming a reality, connecting renewables produced power from areas where sun-power and wind-power are best to areas where the consumption is highest. See for example, what Supernode is doing in connecting Europe with DC Superconducting cables - <https://supernode.energy>. All of these cables will be powered by HTS wires mde using the technologies elaborated on before.

c) Energy Generation: Superconducting generators enabled by HTS wires in off-shore wind-turbines allow for almost twice the power generation compared to non-HTS turbines.

- **HTS Generators:** https://www.amsc.com/wp-content/uploads/HTSGen_Bro_0312_forweb.pdf
- **HTS Wind Turbines:** <https://www.amsc.com/windtec/turbine-designs/>

d) Energy Efficiency: HTS motors, transformers, fault-current limiters, etc.

- **HTS motors:** https://indico.cern.ch/event/760666/contributions/3390601/attachments/1880202/3099643/Navy_Motors-20190715.pdf
- **HTS transformers:** <https://www.slideshare.net/ARGHASAHA4/hts-transformer>
- **HTS fault-current limiters:** <https://www.amsc.com/gridtec/fault-current-limiters/>

e) Energy Storage: Superconducting magnetic energy storage systems (SMES) enabled by HTS wires allow storing large amounts of energy.

Reference: <http://www.superpower-inc.com/content/superconducting-magnetic-energy-storage-smes>

f) Medical: High-field NMR and open MRI machines operating at higher temperatures.

- **NMR:** <https://pubs.acs.org/doi/abs/10.1021/acs.oprd.0c00125#>
- **MRI:** <https://www.sciencedirect.com/science/article/pii/S2211379717310434>

g) Physics: HTS high-field magnets enabled by HTS wires have all kinds of other societal applications from MRI to NMR to fundamental physics.

High-field HTS magnets: <http://www.superpower-inc.com/content/high-field-magnets>

h) Defense: There are numerous defense applications of high-temperature superconductors.

- Navy applications: From ship propulsion to ship degaussing. See - <https://www.afcea.org/content/american-superconductor-supplying-navy-high-temperature-degaussing-system>. All-electric ships are being developed by the Navy wherein all key components of the electric grid are enabled using superconducting devices made using HTS wires.
- Air-force applications: Electric propulsion is being developed and explored using cryogenic/superconducting technologies. See for example – the ASCEND program at Airbus (<https://www.airbus.com/newsroom/stories/ascend-cryogenics-superconductivity-for-aircraft-explained.html>) and the CABLES program at ARPA-E for fully-electrical aviation (<https://www.greencar-congress.com/2021/02/20210227-cables.html>).

Prof. Goyal is a *SUNY Distinguished Professor* and a *SUNY Empire Innovation Professor* at SUNY-Buffalo and an *Emeritus Corporate Fellow* at Oak Ridge National Laboratory. He received the prestigious *E. O. Lawrence Award* from the United States Department of Energy (USDOE) for “*Energy Science & Innovation*”. This is a highly prestigious award given on behalf of the *President of the United States* by the *US Department of Energy Secretary*. He is a recipient of the *R&D Magazine as the 2010 Innovator-of-the-Year* and has received *ten R&D 100 awards*, widely recognized as *Oscars of Innovation*. He has over 360 publications and 88 patents most of which are licensed. A member of the *National Academy of Engineering*, he is a Fellow of 10 diverse scientific societies including - IEEE, MRS, APS, ACERS, ASM, NAI and AAAS.

Dr. Goyal’s work *truly epitomizes* the “Albert Einstein” World Award of Science goal of recognizing *world-leading scientific and technological research and development* which has significant *societal benefits and impact*.

Sincerely,

Thomas Thundat Ph.D.,
SUNY Empire Innovation Professor,
Department of Chemical and Biological Engineering,
University at Buffalo, The State University of New York
Fellow, NAI, IEEE, AAAS, APS, ECS, ASME, SPIE, AIMBE
Canada Excellence Research Chair Laureate

Resume

Prof. Amit Goyal, Ph.D, MBA

Member, National Academy of Engineering (NAE)

Member, National Materials & Manufacturing Board (NMMB)

SUNY Distinguished Professor

SUNY Empire Innovation Professor

Founding Director (10/2021-date), Initiative for Plastics Recycling & Innovation, SUNY-Buffalo

Founding Director (1/2015-7/2021), The RENEW Institute, SUNY-Buffalo

Emeritus Corporate Fellow, Oak Ridge National Laboratory

Fellow - NAI, AAAS, MRS, APS, IEEE, ASM, ACERS, IOP, WTN, WIF

Email: agoyal@buffalo.edu; Ph. No.: (716) 645-5920

Grounds for nominating the candidate: The Nobel Prize for the discovery of high-temperature superconductors was given in the excitement of the numerous potential, large-scale applications of these novel materials. However, it was quickly realized in the field that in order for any large-scale application to be realized significant progress needed to be made in fabricating mile-long, flexible, superconducting wires which can carry millions of Amperes of supercurrent per unit cross-section. From a technical perspective, this meant that essentially single-crystal, flexible wires had to be fabricated from the brittle, high-temperature superconducting ceramics. An additional requirement was that these wires meet the price/performance metric of standard copper wires that can be bought in a hardware store. This seemingly impossible task became the *first holy-grail* in the field. Dr. Goyal's innovations have provided elegant solutions to fabricating such superconducting wires using scalable processes. These methods are now being used world-wide for fabrication of high-performance superconducting wires.

Once fabrication of single-crystal-like, flexible, high-performance superconducting wires was realized, the emphasis in the field shifted to improving the vortex-pinning for the many large-scale, superconductor-related applications in high-applied magnetic fields. It was determined that the ideal defect structures needed in the mile-long superconducting wires were created when heavy-ions are bombarded into the superconductor which creates nanoscale, amorphous, non-superconducting damage tracks at nanoscale spacing. This defect structure was found ideal for pinning the vortex lattice in high-applied magnetic fields. However, heavy-ion irradiation could not be used to create such a microstructure in mile long wires due to prohibitively high-cost and complexity of scale-up, and also because this would render the metal substrate in the wires radioactive. Hence, the *second holy-grail* in the superconductor field became creation of this microstructure in the long wires, but without adding any significant cost! Dr. Goyal's invention of the creation of nanoscale, non-superconducting, columnar defects at nanoscale spacing via the method of phase-separation and strain-induced self-assembly during formation of the superconducting wires provided an elegant solution to this difficult problem. Today, the world's highest performance superconducting wires in high-applied field applications are being enabled by his innovations.

An additional requirement for some applications is low ac-losses in alternating applied magnetic fields. To realize this, ideally a "round" single crystal superconducting wire was needed, whereas the processes being scaled up world-wide were tape or flat geometry conductors. This then became the *third holy-grail* in the field. Dr. Goyal's inventions provide the only way to fabricate such a "round", flexible, single-crystal wire based on a process he invented.

The technologies he has invented and developed to fabricate high-performance superconducting wires are being used world-wide to fabricate long-lengths of superconducting wires for a *whole range of large-scale, societal applications with the potential for true benefit and well-being to mankind*. These applications as detailed in this nomination include – *Energy Generation*: Commercial nuclear fusion enabled for the first time and off-shore wind turbines with superconducting motors for twice the power generation; *Energy Storage*: Superconducting magnetic energy storage systems (SMES); *Energy Efficiency*: Superconducting motors, transformers, fault-current

limiters, etc.; *Energy or Power Transmission*: Superconducting cables enabled by HTS wires allow efficiently transmitting large amount of power; *Medical Applications*: High-field NMR and open MRI machines operating at higher temperatures; *Defense*: All-electric planes and All-electric ships. Dr. Goyal's vision and persistence to address the seemingly insurmountable scientific barriers to realize or enable such wires is *evidence of extraordinary achievement*. Since all large-scale applications of high-temperature superconductors are environmentally friendly, enabling HTS applications not only enable the economic prosperity but also improves the environment and addresses climate-change issues.

Publications/Patents: Dr. Goyal has developed clean energy technologies for over two decades. He has authored more than *360 technical publications* and has *88 issued patents* comprising 70 US and 18 International patents, most of which are licensed. *He was the most cited author worldwide in the field of high-temperature superconductivity from 1999-2009*. Over the years, he has received *over \$50M in research funding related to his personal research*.

Key Awards and Honors:

He has received numerous accolades including the presidential level *DOE's E. O. Lawrence Award* in the inaugural category of *Energy Science & Innovation*. The US Department of Energy (DOE) Secretary on behalf of the *President of the United States* bestows the award. Dr. Goyal was the only Lawrence Award Winner that was invited by then DOE Secretary, Steven Chu to give the *first-ever science lecture* at USDOE (<http://www.osti.gov/sciencecinema/biblio/1043697>). A recent interview in 2021 by Superconductor Week, a leading publication in my field summarizes my personal scientific and technological innovations - <https://www.superconductorweek.com/2021/04/13/an-interview-with-amit-goyal/>.

Other key honors include: *TEN R&D 100 awards* which are widely regarded as the “*Oscars for Innovation*” over the years (in 2017, 2016, 2013, 2012, 2011, two in 2010, 2009, 2007, 1999); *Three National Federal Laboratory Consortium (FLC) Awards for Technology Transfer signifying passion for innovation and translation to industry*; the *2012 World Technology Award* in the category of “Materials”; *2010 R&D 100 Magazine's Innovator of the Year Award*; *2010 Distinguished Alumnus Award* from the Indian Institute of Technology; the *2008 Nano50™ Innovator Award*; the *2007 Pride of India Gold Award*; *University of Rochester's Distinguished Scholar Medal in 2007*; the *U.S. Department of Energy Exceptional Accomplishment Award* in 2005; the *UT-Battelle Inventor-of-the-Year Awards* in 2005 and 1999; the *2005 Global Indus Technovator Award*; in *2001 the Energy-100 Award* for the finest 100 scientific accomplishments of the U.S. Department of Energy since it opened its doors in 1977; the *Massachusetts Institute of Technology's Technical Review TR100 Award*; and the *Lockheed-Martin NOVA Award* for technical achievement in 1999.

He is a Member of the *National Academy of Engineering (NAE)*. He has been elected Fellow of ten professional societies: and the *National Academy of Inventors (NAI)*, the *American Association for Advancement of Science (AAAS)*, the *Materials Research Society (MRS)*, the *American Physical Society (APS)*, *Institute of Electrical and Electronics Engineers (IEEE)*, the *World Innovation Foundation (WIF)*, the *American Society of Metals (ASM)*, the *Institute of Physics (IOP)*, the *American Ceramic Society (ACERS)* and the *World Technology Network (WTN)*.

He was appointed to the National Academies, *National Materials & Manufacturing Board (NMMB)* in 2020. He was invited to join the *National Academies Committee* on – “*Advising NSF on its Efforts to Achieve the Nation's Vision for the Materials Genome Initiative (DMREF)*.”. Most recently, he was invited to serve on a National Academies, NMMB committee on developing the *US Smart Manufacturing Plan*, a congressional mandated study by the Dept. of Energy (DOE) Secretary in partnership with the National Academies. He serves on the *National Academies Panel* for reviewing the NIST Materials Measurement Laboratory, the *National Academies Panel* on reviewing the U.S. Army Research Laboratory in the area of Materials Science, and is a member of the *National Academies Intelligence Science and Technology Experts Group*.

Prof. Amit Goyal

SUNY *Distinguished Professor* & *Empire Innovation Professor*
State University of New York (SUNY) at Buffalo
112 Cooke Hall, Buffalo, New York 14214
Phone: (716) 645-5920; Email: agoyal@buffalo.edu

A. Professional Preparation

Institution	Location	Major Area	Degree	Year
University of Rochester	Rochester, NY, USA	Materials Science & Eng.	Ph.D.	1991
University of Rochester	Rochester, NY, USA	Mech. & Aerospace Eng.	MS	1988
Indian Institute of Technology	Kharagpur, India	Metallurgical Eng.	B. Tech.	1986

B. Appointments

2015-Present	SUNY <i>Distinguished Professor</i>¹ & SUNY <i>Empire Innovation Professor</i>²
2021-Present	Founding Director, <i>Initiative for Plastics Recycling & Innovation</i> , University at Buffalo (UB) (October 2021- to date)
2018-Present	Director, <i>Laboratory for Heteroepitaxial Growth of Functional Materials & Devices</i> , University at Buffalo
2015-7/2021	Founding Director, <i>The Research and Education in eNergy, Environment and Water (RENEW) Institute</i> , University at Buffalo (UB), Buffalo, NY
2015-Present	Emeritus Corporate Fellow , Oak Ridge National Laboratory (ORNL), TN
2010-Present	President & CEO , <i>TapeSolar Inc.</i> , a private-equity funded, solar company, TN
2010-Present	President & CEO , <i>TexMat LLC.</i> , an IP holding & consulting company
2010-2014	Chair, Corporate Fellows Council , UT-Battelle/Oak Ridge National Laboratory (ORNL)
2003-2014	Corporate Fellow & Distinguished Scientist , UT-Battelle/ORNL

C. Management / Administrative Experience

- **Founding Director, *Initiative for Plastics Recycling & Innovation***, University at Buffalo (UB) (October 2021- to date): An **externally-funded**, multidisciplinary initiative at \$1,500,000.00/yr for 6 years. Funding for first three years of \$4,500,000.00 is in place. Funded by the New York Department of Environmental Conservation (NYDEC). Involves 8 multidisciplinary faculty from School of Engineering & Applied Sciences (SEAS), College of Arts & Sciences (CAS) and School of Management (SOM).
- **Founding Director, *The RENEW (Research & Education in Energy, Environment & Water) Institute***, University at Buffalo (UB) (January 2015-July 2021): One of the most expansive **internally-funded** initiatives launched by UB or SUNY-Buffalo in recent years, RENEW (Research and Education in eNergy, Environment and Water) is a multidisciplinary initiative that harnesses the expertise of more than 100 faculty members across seven schools and colleges. During my term as Director, the Institute had the following accomplishments:
 - Attracted and hired, **19 multidisciplinary faculty** with specific area of expertise targeted to fill scientific/technical gaps identified during the Institute's strategic planning across the seven schools and colleges.
 - Assisted with development of over **400 external research grant proposals**, and enabled research resulting in **over 600 publications and over 400 presentations**.
 - Resulted in garnering **over \$50 Million in external funds**.

¹ This system-wide rank (across 64 campuses) of *SUNY Distinguished Professor* is an order above full professorship at UB or SUNY-Buffalo and is considered the highest rank of professor in the SUNY system. The *SUNY Distinguished Professorship* is conferred upon faculty having achieved national or international prominence and a distinguished reputation.

² The *SUNY Empire Innovation Professor* Program is designed to attract exceptionally distinguished faculty to the State of New York.

- Established *cutting-edge, 21st century, RENEW Shared Instrumentation Laboratories*.
- RENEW Institute faculty developed *over 50 new, multidisciplinary educational courses in energy, environment and water*.
- **Chair, Corporate Fellows Council, Oak Ridge National Laboratory** (2009-2014): As Chair of the Corporate Fellows Council, advised ORNL senior management / leadership on specific scientific and technological issues and opportunities, served as a channel for communication between ORNL scientific and technical staff and senior management and articulated ideas and concerns of the scientific and technical staff regarding objectives and directions of the Laboratory.
- **President & CEO and Financial Head (2010-date):** Senior administrator of two companies (TapeSolar Inc. and TexMat LLC) and responsible for all administrative and financial functions. Experience with entrepreneurship and startup of new entities.

D. National Impact: (Via service on National Academy of Science, Engineering and Medicine (NASEM) Committees)

- **Member, National Materials & Manufacturing Board (NMMB) (December 2020- to date):** The NMMB combines the charges of two preexisting boards: The National Materials Advisory Board and the Board on Manufacturing and Engineering Design. Its mission is to provide objective, independent assessments of the current state of materials and manufacturing research, including at the atomic, molecular, and nanoscales. It's also charged with assessing the applications of new and existing materials in innovative ways, including pilot-scale and large-scale manufacturing, the design of new devices and disposal of materials.
- **Member, NASEM Committee on – Advising NSF on its Efforts to Achieve the Nation’s Vision for the Materials Genome Initiative (DMREF) (July 2021- date):** This committee will examine the impact of the National Science Foundation’s program “Designing Materials to Revolutionize and Engineer Our Future” (DMREF) with the goal of furthering the nation’s vision for the Materials Genome Initiative (MGI). It will evaluate the program’s goals, progress, and scientific accomplishments within the context of similar efforts both within the U.S. and abroad.
- **Member, NASEM Committee on – Developing the US Smart Manufacturing Plan, a Congressional Mandated study by the Dept. of Energy (DOE) Secretary in partnership with the National Academies (October 2021- date):** DOE to develop a National Plan, in consultation with the National Academies, for smart manufacturing technology development and deployment to improve the productivity and energy efficiency of the manufacturing sector of the United States, as per the language set forth in The Energy Act of 2020, Sec. 6006 on pages 1113 and 1115.
- **Member, NASEM Panel for reviewing the NIST Materials Measurement Laboratory.**
- **Member, NASEM Panel for reviewing the U.S. Army Research Laboratory** in the area of Materials Science.
- **Member, National Academies Intelligence Science and Technology Experts Group.**

E. Publications - Summary

- *45 invited book chapters and publications.*
- *Over 360 publications in national and international journals* in a wide selection of journals including Science, Nature Communications, Nature Magazine’s Scientific Reports, Philosophical Magazine, etc.
- An independent analysis of the field of high-temperature superconductors conducted by *Thompson-Reuters’s Essential Science Indicators (ESI)* and ScienceWatch.com, which tracks global trends and performance in research, *ranked Dr. Amit Goyal No. 1 worldwide in the total number of citations during the decade* (1999-2009). A recent interview with Amit is posted on ScienceWatch (<http://archive.sciencewatch.com/ana/st/hts/09maySTHTSGoyal1/>).
- **Total number of citations = over 19,821; H-index = 68; i10 = 347.**

F. Patents - Summary

- **Over 150 patent applications and/or invention disclosures** filed.
- **88 issued patents (70 US and 18 International patents)**. A majority of these issued patents have been licensed during the course of the last two decades.
- **Additional patents pending**.

G. Editorial Boards and Advisory Boards (Selected)

- **Member, Board of Reviewing Editors, PNAS Nexus**, a National Academy journal with a focus on multidisciplinary engineering sciences, since October, 2021.
- **Member, Editorial Board, Nature Magazine's Scientific Reports**, since April 2015.
- **Member, External Advisory Board**, Texas Center for Superconductivity at the University of Houston (TcSUH), since 2021.
- **Member, University-wide SUNY Honorary Degree Advisory Committee**, since 2021.
- **Member, External Advisory Board**, Materials Science Program, University of Rochester.
- **Member, Board of Governors for the New York Sea Grant**, since August 2015.

H. Awards of Excellence (Selected)

- Inducted into **National Academy of Engineering** (2018): Elected Member of the National Academy of Engineering, USA for "*For materials science advances and contributions enabling commercialization of high-temperature superconducting materials.*" Election to the National Academy of Engineering is among the highest professional distinctions accorded to an engineer/scientist.
- **DOE's E. O. Lawrence Award** for "*Energy Science & Innovation*" (2011). The E. O. Lawrence award is awarded on behalf of the **President of the United States** by the **US Department of Energy Secretary** to outstanding scientists. This inaugural award in the category of Energy Science and Innovation recognizes transformative accomplishments related to DOE's investments in "use inspired" scientific research to develop new understanding, methodologies and materials required to advance, promote, and enable energy innovation.
- **R&D100 Magazine's "Innovator of the Year" Award** (2010): The "*Innovator of the Year*" Award is given for collective lifetime contributions. Among past recipients of this honor are Larry Page (co-founder of Google), Elon Musk (Inventor of PayPal, Tesla) and Dean Kaman (inventor of the Segway). Widely recognized as the "*Oscars of invention*", the R&D100 awards are given to the most innovative products developed in any field world-wide in that calendar year.
- **Ten R&D100 Awards** (2017, 2016, 2013, 2012, 2011, 2010 (two awards), 2009, 2007, 1999)
- **Three National Federal Laboratory Consortium Awards** for Excellence in Technology Transfer
- **DOE's Energy-100 Award** for the finest 100 scientific accomplishments of the U.S. Department of Energy since it opened its doors in 1977
- **World Technology Award** in the category of "Materials" (2012)
- **ORNL Inventor-of-the-Year Award** (2006 and 1999)
- **Massachusetts Institute of Technology's Technical Review TR100 Award** (1999)
- **Lockheed-Martin NOVA Award** for technical achievement (1999)
- **Fellow of Ten Professional Societies**: National Academy of Inventors (NAI); Materials Research Society (MRS); American Association for Advancement of Science (AAAS); American Physical Society (APS); World Innovation Foundation (WIF); American Society of Metals (ASM); Institute of Physics (IOP); American Ceramic Society (ACERS) and World Technology Network (WTN).
- **"Pride of India" Gold Award** (2007): Bestowed by the *Indian Ambassador* to the USA.
- **Global Indus Technovator Award** by MIT (2005)
- **Distinguished Alumnus Award** from the Indian Institute of Technology (IIT), India (2007).
- **Rochester Distinguished Scholar Medal** (2005) from the University of Rochester, NY.
- **President's Medal** (highest award at university), SUNY-Buffalo, 2019.

List of 10 Significant Publications

1. "High Critical Current Density Superconducting Tapes By Epitaxial Deposition of YBCO Thick Films on Biaxially Textured Metals", **A. Goyal**, D. P. Norton et al., Appl. Phys. Lett., vol. 69, No. 12, Sept. 16, 1996. (cited 1184 times)
2. "Epitaxial YBCO on Biaxially Textured Nickel (001): An Approach to Superconducting Tapes with high Critical Current Density", D. P. Norton, **A. Goyal** et al., Science, 274, 755-757, 1996. (cited 899 times)
3. "Irradiation-free, columnar defects comprised of self-assembled nanodots and nanorods resulting in strongly enhanced flux-pinning in $YBa_2Cu_3O_{7-\delta}$ films," **A. Goyal** et al., Supercond. Sci. Tech., 18 (2005) 1533-1538. (cited 478 times)
4. "High Performance High- T_c Superconducting Wires," S. Kang, **A. Goyal** et al., Science, vol. 311, pgs. 1911-1914, March 31st issue, 2006. (cited 483 times)
5. "The RABiTS Approach: Using Rolling-Assisted Biaxially Textured Substrates for High-Performance YBCO Superconductors," **A. Goyal**, M. Paranthaman and U. Schoop, invited paper, MRS Bulletin, Vol. 29, No.8, pp. 533-542, August 2004. (cited 273 times)
6. "Conductors with Controlled Grain Boundaries: An Approach to the Next Generation, High Temperature Superconducting Wire," **A. Goyal**, D. P. Norton et al., J. of Materials Research, vol. 12, pgs. 2924-2940, 1997. (cited 213 times)
7. "Epitaxial Superconductors on Rolling Assisted Biaxially Textured Superconductors (RABiTS): A Route Towards High Critical Current Density Wire", **A. Goyal** et al., Applied Superconductivity, commemorating the 10th anniversary of HTS, vol. 4, pgs. 403-429, 1997. (cited 162 times)
8. "Texture Formation and Grain Boundary Networks in Rolling Assisted Biaxially Textured Substrates (RABiTS) and in Epitaxial YBCO Films on such Substrates", **A. Goyal**, et al., Micron, 30, 463-478, 1999. (cited 109 times)
9. "Engineering NanoColumnar Defect Configurations for Optimized Vortex Pinning in High Temperature Superconducting Nanocomposite Film-based Wires," S. H. Wee, Y. Zuez, C. Cantoni and **A. Goyal**, Nature Magazine's Scientific Reports, 3, Article number: 2310 (2013). (cited 69 times)
10. "Strain-Modulated Self-Assembly in Nanostructured, Complex Oxide Films via Spontaneous Phase Separation and Ordering Mechanism," S. H. Wee, Y. Gao, Y. L. Zuev, K. L. More, J. Meng and **A. Goyal**, Advanced Functional Materials, doi: 10.1002/adfm.201202101, 2012. (cited 33 times)

Publications Summary: Has published over 360 publications in national and international journals and conference proceedings in a wide selection of journals including Science, Nature Communications, Nature Magazine's Scientific Reports, Philosophical Magazine, Applied Physics Letters, Energy & Environmental Science, Physical Review B, Physics Review Letters, Physica C, Superconductor Science & Technology, Applied Superconductivity, Journal of Materials Research, Journal of Applied Physics, Science and Journal of Minerals, Metals & Materials, Cryogenics, Ultramicroscopy, Journal of American Ceramic Society, IEEE Transactions in Applied Superconductivity, Japanese Journal of Applied Physics, MRS Bulletin, Scripta Metallurgica, Materials Letters, Journal of Electronic Materials, Chemistry of Materials, Journal of Materials Science & Engineering, Materials Science Forum, Journal of Superconductivity and Nanomaterials.

An independent analysis of the field of high-temperature superconductors conducted by Thompson-Reuters's Essential Science Indicators (ESI) and ScienceWatch.com, which tracks global trends and performance in research, Dr. Amit Goyal ranks **no. 1 worldwide in the total number of citations** during the last decade (1999-2009). He also ranks **no. 4 worldwide in the total number of papers** published in same timeframe (this is still the highest number of papers by anyone outside of Japan). A recent interview with Amit is posted on ScienceWatch (<http://archive.sciencewatch.com/ana/st/hts/09maySTHTSGoya1/>). The analysis, conducted by ScienceWatch.com ranked authors, institutions, and countries worldwide by no. of citations, no. of papers, and average citations per paper.

Total number of citations = 19, 836

H-Index = 69

I10-index = 349

**List of
Publications**

1. “Combinatorial synthesis of heteroepitaxial multi-functional thin films with *high-throughput, in-situ, chemical, and structural characterization*,” Eun Ju Moon and Amit Goyal, To be published in **Nature Magazine’s Scientific Reports**, 2021.
2. “Single-Crystal-like, epitaxial GaAs thin film on flexible metal substrate for optoelectronic applications,” Gokul Radhakrishnan, Kyunghoon Kim, Ravi Droopad and Amit Goyal, Submitted to **Nature Magazine’s Scientific Reports**, 2021.
3. “Single-Crystal-like, epitaxial Ge Film Growth on cm-sized, biaxially-textured, Fe-based Substrates,” Kyunghoon Kim, Gokul Radhakrishnan, Ravi Droopad and Amit Goyal, Submitted to **Nature Magazine’s Scientific Reports**, 2021.
4. “Epitaxial Growth of Superconductors on Single-Crystal, Structural, Faceted Fibers (SSIFFS): A New Approach Towards Low-AC Loss Wire”, A. Goyal, S. H. Wee and Y. Zuev, In preparation, Will be submitted to **Science**, 2021.
5. “Dynamic Behavior of Reversible Oxygen Migration in Irradiated-Annealed High Temperature Superconducting Wires,” Yi Zhang, M. W. Rupich, Vyacheslav Solovyov, Qiang Li, Amit Goyal, **Nature Magazine’s Scientific Reports**, volume 10, Article number: 14848, 2020.
6. “Structural, band and electrical characterization of β -(Al_{0.19}Ga_{0.81})₂O₃ films grown by Molecular Beam Epitaxy on Sn doped β -Ga₂O₃ substrate,” A. Vaidya1, J. Sarkar, Y. Zhang, L. Lubecki, J. Wallace, J. Poplawsky, K. Sasaki, A. Kuramata, T. Masui, A. Goyal, J. Gardella, B. Mazumder and U Singisetti, **Journal of Applied Physics**, 126 (2019) 095702.
7. “Probing the Irradiation Defects in Enhanced 2G High Temperature Superconducting Wire”, Yi Zhang, M. W. Rupich, Vyacheslav Solovyov, Qiang Li, Amit Goyal, **Microscopy & Microanalysis 2019**, 25 (S2) (2019) 1614.
8. “Dynamic Oxygen Motion in Irradiated-Annealed High Temperature Superconducting Wire”, Yi Zhang, M. W. Rupich, Vyacheslav Solovyov, Qiang Li, Amit Goyal, **Microscopy & Microanalysis 2019**, 25 (S2) (2019) 1616.
9. “Probing Single Mn atom in doped MoS₂ Monolayer”, Yi Zhang, Chuan Zhao, Hao Zeng, Amit Goyal, To be published in the **Proceedings of Microscopy & Microanalysis 2019**, Portland, Oregon, Aug. 4th-8th, 2019.
10. “Optimal, Nanodefect Configurations via Strain-Mediated Assembly for Optimized Vortex-Pinning in Superconducting Wires from 4.2K-77K”, A Goyal and S. H. Wee, **Journal of Physics**, 871 (2018) 012039.
11. “Heteroepitaxy of large grain Ge film on cube-textured Ni(001) foils through CaF₂ buffer layer,” Chen, Liang, Xie, Weiyu, Wang, Gwo-Ching, Bhat, Ishwara, Zhang, Shengbai, Goyal, Amit, Lu, Toh-Ming, **Thin Solid Films**, Vol: 603, Pages: 428-434, 2015.
12. “Heteroepitaxial Cu₂O on inexpensive, scalable, single-crystal-like metallic substrates: A potential route towards non-toxic, earth-abundant solar cells,” S. H. Wee, P. Huang, J. K. Lee and A. Goyal, **Nature Magazine’s Scientific Reports**, Scientific Reports 5, Article number: 16272, doi:10.1038/srep16272 (2015).
13. “Heteroepitaxy of Ge on Cube-Textured Ni(001) Foils Through CaF₂ Buffer Layer;” Chen, L., Lu, Z.-H., Lu, T.-M., Bhat, I., Zhang, S.B., Goyal, A., Zhang, L.H., Kisslinger, K. and Wang, G.-C., **MRS Advances**, pp. 1–6. doi: 10.1557/adv.2016.517, 2015.
14. “Epitaxial growth of Ba₂YNbO₆ films on biaxially-textured Ni-W substrates as a multifunctional single buffer layer for high J_c epitaxial YBCO film,” S. H. Wee; C. Cantoni and and A Goyal, **MRS Comunications**, Volume 5, Issue 3, pp. 533-538, 2015.
15. “Robust critical current density in applied magnetic fields in 5 μ m thick, SmBa₂Cu₃O_{7- δ} based superconducting wires,” A O Ijaduola, F List, H-S Kim, S-S

Oh and A Goyal, **Physica C: Superconductivity and its Applications**, Volume 517, Pages 1–4, 2015.

16. “Ultra-High Performance, High-Temperature Superconducting Wires via Cost-effective, Scalable, Co-evaporation Process”, Ho-Sup Kim, Sang-Soo Oh, Hong-Soo Ha, Dojun Youm, Seung-Hyun Moon, Jungho Kim, Shi Xue Dou, Yoon-Uk Heo, Sung-Hoon Wee and A. Goyal, **Nature Magazine’s Scientific Reports**, 4, Article number:4744doi:10.1038/srep04744, 2014.
17. “Engineering NanoColumnar Defect Configurations for Optimized Vortex Pinning in High Temperature Superconducting Nanocomposite Film-based Wires,” S. H. Wee, Y. Zuev, C. Cantoni and A. Goyal, **Nature Magazine’s Scientific Reports**, 3, Article number: 2310 (2013).
18. “Robust superconducting $\text{FeSe}_{0.5}\text{Te}_{0.5}$ coated conductors at 30 tesla,” Weidong Si, Su Jung Han, Xiaoya Shi, Steven N. Ehrlich, J. Jaroszynski, Amit Goyal, and Qiang Li, **Nature Communications**, 4, Article number: 1347, 2013, doi:10.1038/ncomms2337.
19. “Orientational domains in metalorganic chemical vapor deposited $\text{CdTe}(111)$ film on cube-textured Ni,” G. C. Wang, L.H. Zhang, Kim Kisslinger, C. Gaire, A. Goyal, I. Bhat and T.-M. Lu, **Thin Solid Films**, 531 (2013) 217–221.
20. “Frontiers in Thin Film Epitaxy and Nanostructured Materials,” J. Narayan, J. Schwartz, A. Goyal, H. Y. Wang, S. H. Jin and X. Z. Liao, **J. of Mater. Res.**, 28 (2013) 1625-1625.
21. “Strain-Modulated Self-Assembly in Nanostructured, Complex Oxide Films via Spontaneous Phase Separation and Ordering Mechanism,” S. H. Wee, Y. Gao, Y. L. Zuev, K. L. More, J. Meng and A. Goyal, **Advanced Functional Materials**, doi: 10.1002/adfm.201202101, 2012.
22. “Heteroepitaxial growth of Si films on flexible metallic substrates for fabrication of low cost, high performance Si solar cells,” S. H. Wee, C. Cantoni, T. Fanning, J. Bornstein, D. F. Bogorin, M. Paranthaman and A. Goyal, **Energy & Environmental Science** (EES), 5 (2012) 6052-6056.
23. C. Gaire, J. Palazzo, A. Goyal, G. C. Wang and T. M. Lu, “Low temperature epitaxial growth of Ge on cube-textured Ni,” **J. of Crys. Growth**, 343 (2012) 33-37.
24. “Phase Stability of Cubic Pyrochlore Rare Earth Tantalate Pinning Additives in $\text{YBa}_2\text{Cu}_3\text{O}_{7-\text{x}}$ Superconductor,” S. H. Wee, C. Cantoni, Y. L. Zuev, E. D. Specht, and A. Goyal, **J. of Am. Cer. Soc.**, 95 (2012) 1174-1177.
25. C. Gaire, S. Rao, M. Riley, L. Chen, A. Goyal, S. Lee, I. Bhat, T. M. Lu, and G. C. Wang, “Epitaxial growth of CdTe thin film on biaxially textured Ni substrate,” **Thin Solid Films**, 520 (2012) 1862-1865.
26. “Critical currents, magnetic relaxation and pinning in $\text{NdBa}_2\text{Cu}_3\text{O}_7$ -delta films with BaZrO_3 -generated columnar defects,” Ijaduola, AO, Wee, SH, Goyal, A, Martin, PM, Li, J, Thompson, JR, Christen, DK, **Supercond. Sci & Tech.**, 25, Article No. 045013, 2012.
27. “Nanotechnologies to enable high-performance superconductors for energy applications”, C. Cantoni and A. Goyal to be published in second edition of book titled “**Nanotechnology for the Energy Challenge**” by Wiley-VCH, 2013, edited by J. Garcia, Spain.
28. “Structural engineering of epitaxial, self-assembled ferromagnetic cobalt/yttria-stabilized zirconia nanocomposites for ultrahigh-density storage media,” J. Shin, A. Goyal, C. Cantoni, J. W. Sinclair, and J. R. Thompson, **NanoTechnology**, 23, Article No. 155602, 2011.
29. “Triangular Graphene Grain Growth on Cube-textured Cu Substrates,” J. Liu, J. Wu, C. M. Edwards, C. L. Berrie, D. Moore, Z. Chen, V. A. Maroni, M. Paranthaman, and A. Goyal, **Advanced Functional Materials**, 21 (2011) 3868-3874.
30. “Strain-driven Oxygen Deficiency in Self-assembled, Nanostructured, Composite

Oxide Films," C. Cantoni, Y. F. Gao, S. H. Wee, E. D. Specht, J. Gazquez, J. Y. Meng, S. J. Pennycook and A. Goyal, ACS Nano, 2011, 5 (6), pp 4783–4789.

31. "Polarization manipulation via orientation control in heteroepitaxial BiFeO₃ thin films on biaxially textured, flexible metallic tapes," J. Shin, A. Goyal, S. Jesse, and L. Heatherly, Appl. Phys. Exp., Vol.: 4, Issue: 2, Article Number: 021501, DOI: 10.1143/APEX.4.021501, 2011.
32. "Formation of Stacking Faults and Their Correlation with Flux Pinning and Critical Current Density in Sm-doped YBa₂Cu₃O_{7-x} Films," S. H. Wee, E. D. Specht, C. Cantoni, Y. L. Zuev, V. Maroni, W. Wong-Ng, G. Liu, T. J. Haugan, and A. Goyal, Phys. Rev. B, 83, 224520 (2011).
33. "Grain boundary networks in high-performance, heteroepitaxial, YBCO films on polycrystalline, cube-textured metals," A. Goyal, D. P. Field, R. Held and J. Mannhart, Phil. Mag., 91 (2011) 246-255.
34. "Formation of Self-Assembled, Double-Perovskite, Ba₂YNbO₆ Nanocolumns and Their Contribution to Flux-Pinning and J_c in Nb-Doped YBa₂Cu₃O_{7-δ} Films," S. H. Wee, A. Goyal, Y. L. Zuev, C. Cantoni, V. Selvamanickam, and E. D. Specht, Appl. Phys. Exp., 3 (2010) 023101.
35. "Enhanced Flux Pinning and Critical Current Density via Incorporation of Self-assembled Rare-earth Barium Tantalate Nanocolumns within YBa₂Cu₃O_{7-δ} films," S. H. Wee, A. Goyal, Amit, E. D. Specht, C. Cantoni, Y. L. Zuev, V. Selvamanickam, S. Cook, Physical Review B, vol. 81, Issue 14, id. 140503, 2010.
36. "Multifunctional, phase separated, BaTiO₃+CoFe₂O₄ cap buffer layers for improved flux-pinning in YBa₂Cu₃O_{7-δ} based coated conductors," S. H. Wee, J. Shin, C. Cantoni, Y. L. Zuev, S. Cook, and A. Goyal, Supercond. Sci. Technol., 23 (2010) 014007.
37. "Enhanced flux pinning in MOCVD-YBCO films through Zr additions: systematic feasibility studies," T. Aytug, M. Paranthaman, E. D. Specht, Y. Zhang, K. Kim, Y. L. Zuev, C. Cantoni, A. Goyal, D. K. Christen, V. A. Maroni, Y. Chen and V. Selvamanickam, Supercond. Sci. Technol., 23 014005, 2010.
38. "Modified Lanthanum Zirconium Oxide buffer layers for low-cost, high performance YBCO coated conductors," M. Paranthaman, S. Sathyamurthy, Xiaoping Li, E.D. Specht, S.H. Wee, C. Cantoni, A. Goyal, M.W. Rupich, Physica C, 470 (2010) 352–356.
39. "An evaluation of phase separated, self-assembled LaMnO₃-MgO nanocomposite films directly on IBAD-MgO as buffer layers for flux pinning enhancements in YBa₂Cu₃O₇-delta coated conductors," O. Polat, T. Aytug, M. P. Paranthaman, K. J. Leonard, A. R. Lupini, S. J. Pennycook, H. M. Meyer, K. Kim, X. F. Qiu, S. Cook, J. R. Thompson, D. K. Christen, A. Goyal, X. M. Xiong, V. Selvamanickam, J. of Mater. Res., 25 (2010) 437-443.
40. "Nanotechnology for Superconductors from the Energy Perspective ", C. Cantoni and A. Goyal published in book titled "Nanotechnology for the Energy Challenge" by Wiley-VCH, 2010, edited by J. Garcia, Spain, ISBN: 978-3-527-32401-9.
41. "Enhanced and uniform in-field performance in long (Gd, Y)-Ba-Cu-O tapes with zirconium doping fabricated by metal-organic chemical vapor deposition," V. Selvamanickam, A. Guevara, Y. Zhang, I. Kesgin, Y. Xie, G. Carota, Y. Chen, J. Dackow, Y. Zhang, Y. Zuev, C. Cantoni, A. Goyal, J. Coulter, L. Civale, Supercond. Sci. & Tech., 23 (2010), Article Number 014014.
42. "Enhanced flux pinning in MOCVD-YBCO films through Zr-additions: Systematic feasibility studies," Aytug, T., Paranthaman, M., Specht, E. D., Kim, K., Zhang, Y., Cantoni, C., Zuev, Y., Goyal, A., Christen, D. K., and Maroni, V. A., Supercond. Sci. & Tech., 23 (2010) Article Number: 014005.
43. "High-T_c Superconducting Thin- and Thick-Film-Based Coated Conductors for Energy Applications," C. Cantoni and A. Goyal published in book titled "Thin Film

Metal-Oxides: Fundamentals and Applications in Electronics and Energy” by Springer, 2010, edited by S. Ramanathan, Harvard University.

44. “Phase-Separated, Epitaxial, Nanostructured LaMnO₃+MgO Composite Cap Layer Films for Propagation of Pinning Defects in YBa₂Cu₃O_{7-x} Coated Conductors,” S. H. Wee, J. Shin, C. Cantoni, H. M. Meyer, S. Cook, Y. L. Zuev, E. D. Specht, X. M. Xiong, M. P. Paranthaman, V. Selvamanickam, A. Goyal, Appl. Phys. Exp., 2 (2009) 063008.
45. “A three-dimensional, biaxially textured oxide nanofence composed of MgO single crystal nanobelt segments,” S. H. Wee, A. Goyal, K. More and E. Specht, Nanotechnology, 20 (2009) 215608.
46. “Single-crystal-like, c-axis oriented BaTiO₃ thin films with high-performance on flexible metal templates for ferroelectric applications,” J. Shin, A. Goyal, Appl. Phys. Lett., 94 (2009), 252903.
47. “Growth of epitaxial γ -Al₂O₃ films on rigid single-crystal ceramic substrates and flexible, single-crystal-like metallic substrates by pulsed laser deposition,” J. Shin, A. Goyal, and S. H. Wee, Thin Solid Films, 517, Issue 19, Pages 5710-5714, Aug., 2009.
48. “Growth of thick BaZrO₃-doped YBa₂Cu₃O_{7- δ} films with high critical currents in high applied magnetic field”, S. H. Wee, A. Goyal, and Y. L. Zuev, IEEE Trans. Supercon., 19, 3266, 2009.
49. “Effects on J_c of Pining Center Morphology for Multiple-in-Line-Damage in Coated Conductor and Bulk, Melt-Textured HTS,” Weinstein, R., Parks, D., Sawh, R.-P., Mayes, B., Gandini, A., Goyal, A., Chen, Y., and Selvamanickam, V., Physica C, 469 (2009) 2068-2076.
50. “Magnetic field orientation dependence of flux pinning in (Gd,Y)Ba₂Cu₃O_{7-x} coated conductor with tilted lattice and nanostructures,” Zhang, Y., Specht, E. D., Cantoni, C., Christen, D. K., Zuev, Y. L., Goyal, A., Sinclair, J., Thompson, J. R., Aytug, T., Paranthaman, M. P., Chen, Y., and Selvamanickam, V., Physica C, 469 (2009) 2044-2051.
51. “Low-angle grain boundaries in YBa₂Cu₃O_{7- δ} with high critical current densities,” R. Held, C. W. Schneider, J. Mannhart, L. F. Allard, K. L. More, and A. Goyal, Phys. Rev. B, 79, Article No. 014515, Jan. 2009.
52. “Influence of oxygen deficiency on the out-of-plane tilt of epitaxial Y₂O₃ films on Ni-5%W tapes,” C. Cantoni, E. D. Specht, A. Goyal, X. Li and M. Rupich, J. of Mater. Res., 24 (2009) 520-525.
53. “Enhanced flux pinning by BaZrO₃ and (Gd,Y)₂O₃ nano-structures in metal organic chemical vapor deposited GdYBCO high temperature superconductor tapes,” Y. Chen, V. Selvamanickam, Y. Zhang, Y. L. Zuev, C. Cantoni, E. D. Specht, M. P. Paranthaman, T. Aytug, A. Goyal and D. Lee, Appl. Phys. Lett., vol. 94, Article Number: 062513, 2009.
54. “Deposition studies and coordinated characterization of MOCVD YBCO films on IBAD-MgO templates,” Aytug T, Paranthaman M, Heatherly L, Zuev Y, Zhang Y, Kim K, Goyal A, Maroni VA, Chen Y, Selvamanickam V, Super. Sci & Tech., 22, Article No. -15008, 2009.
55. “High-T_c Superconducting Thin and Thick-Film Based Coated Conductors for Energy Applications,” C. Cantoni and A. Goyal, Invited Chapter for book titled “Thin Film Metal-Oxides: Fundamentals and Applications in Electronics and Energy” published by Springer, 2009, edited by S. Ramanathan, Harvard University.
56. “Fabrication of epitaxial γ -Al₂O₃ and spinel NiAl₂O₄ films on SrTiO₃ by pulsed laser ablation,” J. Shin, A. Goyal, K. More and S.H. Wee, J. of Crys. Growth, 311, Issue 1, Pages 210-213, Dec. 2008.
57. “Tuning flux-pinning in epitaxial NdBa₂Cu₃O_{7- δ} films via engineered, hybrid

nanoscale defect structures," S. H. Wee, A. Goyal, Y. L. Zuev, and C. Cantoni, Appl. Phys. Exp., Vol. 1, Issue: 11, Article Number: 111702, NOV 2008.

58. "High performance superconducting wires in high applied magnetic fields via nanoscale defect engineering", S. H. Wee, A. Goyal, Y. L. Zuev, and C. Cantoni, Supercond. Sci. Technol., 21, 092001, 2008.

59. "Near-isotropic performance of intrinsically anisotropic high-temperature superconducting tapes due to self-assembled nanostructures," Y. L. Zuev, D. K. Christen, S. H. Wee, A. Goyal, and S. W. Cook, Appl. Phys. Lett., 93, Article no. 172512, 2008.

60. "Improved textured $\text{La}_2\text{Zr}_2\text{O}_7$ buffer on La_3TaO_7 seed for all-MOD Buffer/YBCO coated conductors," Paranthaman MP, Bhuiyan MS, Sathyamurthy S, Heatherly L, Cantoni C, Goyal A, Physica C, 468 (2008) 1587-1590.

61. "Extraction of misorientation components from the total misorientation at grain boundaries using electron diffraction in a $\text{Y}_0.9\text{Sm}_0.1\text{Ba}_2\text{Cu}_3\text{O}_7$ film," J. Li and A. Goyal, J. of Am. Cer. Soc., 91 (2008) 3045-3051.

62. "Spatial ordering and anisotropy in surface stress domains and nanostructural evolution," Gao YF, Meng JY, Goyal A, Stocks GM, JOM, 60 (2008) 54-58.

63. "Epitaxial (La, Sr) TiO_3 on textured Ni-W as a conductive buffer architecture for high temperature superconducting coated conductor," Kim K, Norton DP, Christen DK, Cantoni C, Aytug T, Goyal A, Physica C, 468 (2008) 961-967.

64. "Superconducting wire with record performance in high applied magnetic fields via nanoscale defect engineering," S. Wee, A. Goyal, Y. Zuev and C. Cantoni, Supercond. Sci. & Tech., vol. 21, Article Number: 092001, SEP 2008.

65. "Enhanced Flux-Pinning in Dy-Doped, MOD YBCO Films on RABiTS," Goyal A., Li J., Martin P. M., Gapud A., Specht E. D., Paranthaman M., Li X., Zhang W., Kodenkandath T., Rupich M. W., IEEE Transactions on Applied Superconductivity, Volume 17, Issue 2, Part 3, June 2007 Page(s):3340 – 3342.

66. "Fabrication of High- J_c $\text{NdBa}_2\text{Cu}_3\text{O}_{7-x}$ and BaZrO_3 -doped $\text{NdBa}_2\text{Cu}_3\text{O}_{7-x}$ Films on RABiTS," Wee S. H., Goyal A., Martin P. M., Li J., Paranthaman M., and Heatherly L., IEEE Transactions on Applied Superconductivity, Volume 17, Issue 2, Part 3, June 2007 Page(s):3672 – 3674.

67. "Slot Die Coating and Conversion of LZO on Rolling Assisted Biaxially Textured Ni-W Substrates With and Without a Very Thin Seed Layer in Low Vacuum," Heatherly L., Hsu H., Wee S. H., Li J., Sathyamurthy S., Paranthaman M., and Goyal A., IEEE Transactions on Applied Superconductivity, Volume 17, Issue 2, Part 3, June 2007 Page(s):3417 – 3419.

68. "MOD Buffer/YBCO Approach to Fabricate Low-Cost Second Generation HTS Wires," Paranthaman M. P., Sathyamurthy S., Bhuiyan M. S., Martin P. M., Aytug T., Kim K., Fayek M., Leonard K. J., Li J., Goyal A., Kodenkandath T., Li X., Zhang W., Rupich M. W., IEEE Transactions on Applied Superconductivity, Volume 17, Issue 2, Part 3, June 2007 Page(s):3332 – 3335.

69. "Control of Flux Pinning in MOD YBCO Coated Conductor," Zhang W., Huang Y., Li X., Kodenkandath T., Rupich M. W., Schoop U., Verebelyi D. T., Thieme C. L. H., Siegal E., Holesinger T. G., Maiorov B., Civale L., Miller D. J., Maroni V. A., Li J., Martin P. M., Specht E. D., Goyal A., Paranthaman M. P., IEEE Transactions on Applied Superconductivity, Volume 17, Issue 2, Part 3, June 2007 Page(s):3347 – 3350.

70. "Flux-pinning characteristics as a function of density of columnar defects comprised of self-assembled nanodots and nanorods in epitaxial $\text{YBa}_2\text{Cu}_3\text{O}_x$ films for coated conductor applications," S. Kang, A. Goyal, J. Li et al., Physica C-Superconductivity and its Applications, Vol. 457, Issue: 1-2, Pages: 41-46, JUN 15 2007.

71. "Local epitaxy of $\text{YBa}_2\text{Cu}_3\text{O}_x$ on polycrystalline Ni measured by x-ray

microdiffraction,” E.D. Specht, A. Goyal A and W. Liu, **J. of Mater. Res.**, Vol. 22, Issue: 3, Pages: 664-674, Mar. 2007.

72. “Strong enhancement of flux pinning in $\text{YBa}_2\text{Cu}_3\text{O}_x$ multilayers with columnar defects comprised of self-assembled BaZrO_3 nanodots,” S. Kang, K. J. Leonard, P. M. Martin, J. Li and A. Goyal, **Supercond. Sci & Tech.**, Vol. 20, Issue: 1, Pages: 11-15, Jan. 2007.

73. “Electrical properties of epoxy resin based nano-composites,” Enis Tuncer, Isidor Sauers, D Randy James, Alvin R Ellis, M Parans Paranthaman, Tolga Aytug, Srivatsan Sathyamurthy, Karren L More, Jing Li and Amit Goyal, **Nanotechnology**, vol. 18, 025703-025710, Jan. 17, 2007.

74. “Formation of high-quality, epitaxial $\text{La}_2\text{Zr}_2\text{O}_7$ layers on biaxially textured substrates by slot-die coating of chemical solution precursors,” Wee SH, Goyal A, Hsu H, **J. of Am. Cer. Soc.**, 90 (2007) 3529-3535.

75. “Low-Cost, High-Performance, Epitaxial Ceramic Films on Artificial Substrates for Energy and Electronic Applications,” A. Goyal, in **Global Roadmap for Ceramic and Glass Technology**, edited by S. Freiman, published by Wiley, ISBN: 978-0-470-10491-0, pages 891-902, June 2007.

76. “Superconducting YBCO Conductors: The RABiTS Approach,” A. Goyal, chapter in encyclopedia titled “**Encyclopedia of Materials: Science and Technology**” edited by K. H. Jürgen Buschow, Robert W. Cahn, Merton C. Flemings, Bernard Ilschner (print), Edward J. Kramer, Subhash Mahajan, and Patrick Veyssiére, published by Elsevier, 2009, ISBN: 978-0-08-043152-9.

77. “Massive Enhancements in pinning via columnar defects comprised of self-aligned BZO nanodots,” A. Goyal, S. Kang, and J. Li, **Invited book chapter**, published in book titled “**Flux Pinning and AC loss Studies on YBCO Coated Conductors**” edited by M. Parans Paranthaman and Venkat Selvamanickam, published by Nova Science Publishers, 2007.

78. “Special section: Superconducting wires and tapes – Foreword,” Paranthaman MP, Selvamanickam V, Matsumoto K, Gianni L, Zhang W, Goyal A, Wong-Ng W, **J. Elect. Mater.**, 36 (2007) 1229.

79. “Epitaxial growth of High- J_c $\text{NdBa}_2\text{Cu}_3\text{O}_x$ films on RABiTS by pulsed laser deposition,” Wee SH, Goyal A, Li J, **J. Elect. Mater.**, 36 (2007) 1230-1233.

80. “Strong enhancement of flux pinning in thick $\text{NdBa}_2\text{Cu}_3\text{O}_x$ films grown on ion-beam assisted deposition- MgO templates via three-dimensional self-assembled stacks of BaZrO_3 nanodots,” Wee SH, Goyal A, Li J, Zuev YL, Cook S, **J. of Appl. Phys.**, 102 (2007) Article No. 063906.

81. “Enhancement of dielectric strength in nanocomposites,” Tuncer E, Sauers I, James DR, Ellis AR, Paranthaman MP, Goyal A, More KL, **Nanotechnology**, 18 (2007) Article Number: 325704.

82. “The incorporation of nanoscale columnar defects comprised of self-assembled BaZrO_3 nanodots to improve the flux pinning and critical current density of $\text{NdBa}_2\text{Cu}_3\text{O}_x$ films grown on RABiTS, Wee SH, Goyal A, Li J, Zuev YL, Cook S, Heatherly L, **Supercond. Sci. & Tech.**, 20 (2007) 789-793.

83. “Analysis of flux pinning in $\text{YBa}_2\text{Cu}_3\text{O}_x$ films by nanoparticle-modified substrate surfaces,” T. Aytug, M. Paranthaman, K. J. Leonard, S. Kang S, P. M. Martin PM, L. Heatherly, A. Goyal, A. O. Ijaduola, J. R. Thompson, D. K. Christen, R. Meng, I. Rusakova and C. W. Chu, **Phys. Rev. B**, Vol. 74 Issue: 18 Article Number: 184505, Nov.2006.

84. “Stacking faults in $\text{YBa}_2\text{Cu}_3\text{O}_x$: Measurement using x-ray diffraction and effects on critical current,” E. D. Specht, A. Goyal, J. Li et al., **Appl. Phys. Lett.**, Vol. 89, Issue 16, Article Number: 162510, Oct. 16 2006.

85. “Strong flux-pinning in epitaxial $\text{NdBa}_2\text{Cu}_3\text{O}_7$ -delta films with columnar defects comprised of self-assembled nanodots of BaZrO_3 ,” S. H. Wee, A. Goyal, P. M. Martin et al., **Supercond. Sci & Tech.**, Vol. 19, Issue 10, Pages: L42-L45. Oct.

2006.

86. "All MOD buffer/YBCO approach to coated conductors," M. Paranthaman, S. Sathyamurthy, L. Heatherly, P. M. Martin, A. Goyal, T. Kodenkandath X. Li, C. L. H. Thieme and M. W. Rupich, Physica C-Superconductivity and its Applications, Vol. 445, Pages: 529-532 Oct. 1 2006.
87. "Method to separate in-plane and out-of-plane misorientation from the total misorientation at grain boundaries in polycrystalline YBCO films," J. Li and A. Goyal, published in the Proceedings of the Microscopy Society of America, July 30-Aug 6, 2006, Chicago, IL.
88. "High Performance High-T_c Superconducting Wires," S. Kang, A. Goyal, J. Li, A. Gapud, P. M. Martin, J. R. Thompson, D. K. Christen, F. A. List, M. Paranthaman and D. F. Lee, Science, vol. 311, pgs. 1911-1914, March 31st issue, 2006.
89. "Extended BaZrO₃ Nanodot Columns in Thick YBa₂Cu₃O_{7-δ} Film," J. Li, S. Kang and A. Goyal, published in the Proceedings of the Microscopy Society of America, July 30-Aug 6, 2006, Chicago, IL.
90. "Processing Dependence of Texture, and Critical Properties of YBa₂Cu₃O_{7-δ} Films on RABiTS Substrates by a Non-fluorine MOD Method," Y. Xu, A. Goyal, K. J. Leonard, E. D. Specht, D. Shi and M. Paranthaman, J. Am. Cer. Soc., 89 (2006) 914-920.
91. "Stacking faults in YBCO: measurement by x-ray diffraction and effects on critical current," E. D. Specht, A. Goyal, J. Li, P. M. Martin, X. Li and M. Rupich, Appl. Phys. Lett., 89 (16): Art. No. 162510 OCT 16 2006.
92. "High in-field critical current densities in epitaxial NdBa₂Cu₃O_{7-δ} thin films on RABiTS by pulsed laser deposition," S. H. Wee, A. Goyal, P. M. Martin and L. Heatherly, Supercond. Sci. Technol., 19, 865-868, 2006.
93. "Strong Flux-Pinning in Epitaxial Nd-123 films with Columnar Defects Comprised of Self-assembled Nanodots of BZO," S. H. Wee, A. Goyal, P. M. Martin, J. Li, M. Paranthaman and L. Heatherly, Supercond. Sci. Technol., 19, L42-L45, 2006.
94. "Solution Processed Lanthanum Zirconium Oxide as a Primary Barrier Layer for High-I_c Coated Conductors," S. Sathyamurthy, M. Paranthaman, L. Heatherly, P. M. Martin, E. D. Specht and A. Goyal, J. of Materials Research, 21 (2006) 910-914.
95. "Deposition of Rare Earth Tantalate Buffers on Textured Ni-W Substrates for YBCO Coated Conductor Using CSD," M. S. Bhuiyan, M. Paranthaman, A. Goyal, L. Heatherly and D. Beach, J. of Materials Research, 21 (2006) 767-773.
96. "Enhancements of Flux-pinning in YBa₂Cu₃O₇ Films via Nanoscale Modification of Substrate Surfaces," T. Aytug, D.K. Christen, M. Paranthaman, A.A. Gapud, H.M. Christen, S. Kang, M. Varela, K.J. Leonard, A. Goyal, P.M. Martin, J.R. Thompson, A. O. Ijaduola, R. Meng, I. Rusakova, C.W. Chu, T.H. Johansen and S.W. Chan, Invited book chapter, to be published in book titled "Flux Pinning and AC loss Studies on YBCO Coated Conductors" edited by M. Parans Paranthaman and Venkat Selvamanickam, published by Nova Science Publishers, 2007.
97. "Mechanical Properties of Pure Ni and Ni-Alloy Substrate Materials for Y-Ba-Cu-O Coated Conductors," C. C. Clickner, J. W. Ekin, N. Cheggour, C. L. H. Thieme, Y. Qiao, Y. Y. Xie and A. Goyal, Cryogenics, 46 (2006) 432-438.
98. "A Perspective on Conducting Oxide Buffers for Cu based YBCO Coated Conductors, K. Kim, M. Paranthaman, D. P. Norton, C. Cantoni and A. Goyal, Superconductor Sci. & Tech., 19 (2006) R23-R29.
99. "Enantiospecific Electrodeposition of Chiral CuO Films on Cu(001) Rolling Assisted Biaxially Textured Substrates," Jay Switzer and A. Goyal, Chemistry of Materials, 2006.
100. "Electrodeposition of CuO Epitaxial Films on Cu (100) Rolling-Assisted Biaxially Textured Substrates," R. Liu, E. W. Bohannan, E. A. Kulp, G. S. Hemanth, J. A. Switzer and A. Goyal, Physica C, 2006.

101. “Strong Flux-pinning in YBCO Films by Columnar Defects Comprised of Self-assembled Nanodots and Nanorods,” A. Goyal, S. Kang, K. Leonard, P. Martin, A. Gapud, M. Varela, M. Paranthaman, I. Ijadoula, J. Thompson, D. Christen, S. Pennycook and F. A. List, Supercond. Sci. Tech., 18 (2005) 1533-1538.

102. “Assessment of chemical solution synthesis and properties of $Gd_2Zr_2O_7$ thin films as buffer layers for second generation high-temperature superconductor wires,” T. Aytug, M. Paranthaman, K.J. Leonard, H.Y. Zhai, M.S. Bhuiyan, E.A. Payzant, A. Goyal, S. Sathyamurthy, D.B. Beach, P.M. Martin, D.K. Christen, X. Li, T. Kodenkandath, U. Schoop, M.W. Rupich, H. E. Smith, T. Haugan and P. N. Barnes, J. of Mater. Res., 20 (2005) 2988-2996.

103. “Long-range Current Flow and Percolation in RABiTS-type conductors and the relative importance of out-of-plane and in-plane Misorientations in determining J_c ,” A. Goyal, N. Rutter, C. Cantoni and D. F. Lee, Physica C, 426 (2005) 1083-1090.

104. “Pulsed Electron Deposition of Fluorine-based Precursors for YBCO Coated Conductors,” H. M. Christen, D. F. Lee, F. A. List, S. W. Cook, K. J. Leonard, L. Heatherly, P. Martin, M. Paranthaman, A. Goyal and C. M. Rouleau, Superconductor Sci. & Tech., Volume 18, Number 9, September 2005, pp. 1168-1175(8).

105. “Growth of YBCO Films on MgO-based Rolling-assisted-biaxially-textured substrates,” M. Paranthaman, T. Aytug, H. Y. Zhai, L. Heatherly, A. Goyal and D. K. Christen, Supercond. Sci & Tech., 18 (2005) 223-228.

106. “R&D of RABiTS-based Coated Conductors: Conversion of Ex-Situ YBCO Superconductor Using a Novel Pulsed Electron-Beam Precursor,” D. F. Lee, H. M. Christen, F. A. List, L. Heatherly, K. J. Leonard, C. M. Rouleau, S. W. Cook, P. M. Martin, M. Paranthaman and A. Goyal, Physica C, 426 (2005) 878-886.

107. “High critical current $YBa_2Cu_3O_{7-\delta}$ thick films on rolling-assisted biaxially textured substrates,” S. Kang, A. Goyal, N. Rutter, K. Leonard and D. Kroeger, Journal of the American Ceramic Society, Volume 88, Issue 10, Page 2677-2680, Oct 2005.

108. “Deposition of $(Y_2BaCuO_5/YBa_2Cu_3O_{7-x})xN$ multilayer films on Ni-based textured substrates,” T. Haugan, P. N. Barnes, T. A. Campbell, A. Goyal, A. Gapud, S. Kang and L. Heatherly, Physica C, 425 (1-2): 21-26 SEP 1 2005.

109. “Second generation HTS wire based on RABiTS substrates and MOD YBCO,” Schoop U, Rupich MW, Thieme C, Verebelyi DT, Zhang W, Li X, Kodenkandath T, Nguyen N, Siegal E, Civale L, Holesinger T, Maiorov B, Goyal A, Paranthaman M, IEEE Transactions on Applied Superconductivity, 15 (2): 2611-2616 Part 3, JUN 2005

110. “Liquid phase enhanced hybrid MOD approach for high performance YBCO films development,” Xu Y, Goyal A, Leonard K, Heatherly L, Martin P, IEEE Transactions on Applied Superconductivity, 15 (2): 2617-2619 Part 3, JUN 2005

111. “Improved YBCO coated conductors using alternate buffer architectures,” Paranthaman MP, Sathyamurthy S, Bhuiyan MS, Goyal A, Kodenkandath T, Li X, Zhang W, Thieme CLH, Schoop U, Verebelyi DT, Rupich MW, IEEE Transactions on Applied Superconductivity, 15 (2): 2632-2634 Part 3, JUN 2005.

112. “Low-pressure conversion studies for YBCO precursors derived by PVD and MOD methods,” List FA, Clem PG, Heatherly L, Dawley JT, Leonard KJ, Lee DF, Goyal A, IEEE Transactions on Applied Superconductivity, 15 (2): 2656-2658 Part 3, JUN 2005.

113. “Solution deposition approach to high J_c coated conductor fabrication,” Sathyamurthy S, Paranthaman M, Bhuiyan MS, Payzant EA, Lee DF, Goyal A, Li X, Kodenkandath T, Schoop U, Rupich M, IEEE Transactions on Applied Superconductivity, 15 (2): 2974-2976 Part 3, JUN 2005.

114. “Iridium: An oxygen diffusion barrier and a conductive seed layer for RABiTS-based coated conductors,” Aytug T, Paranthaman M, Zhai HY, Leonard KJ, Gapud AA,

Thompson JR, Martin PM, Goyal A, Christen DK, IEEE Transactions on Applied Superconductivity, 15 (2): 2977-2980 Part 3, JUN 2005.

115.“Investigation of TiN seed layers for RABiTS architectures with a single-crystal-like out-of-plane texture,” Cantoni C, Goyal A, Schoop U, Li X, Rupich MW, Thieme C, Gapud AA, Kodenkandath T, Aytug T, Paranthaman M, Kim K, Budai JD, Christen DK, IEEE Transactions on Applied Superconductivity, 15 (2): 2981-2984 Part 3, JUN 2005.

116.(La, Sr)TiO₃ as a conductive buffer for high-temperature superconducting coated conductors,” Kim K, Norton DP, Cantoni C, Aytug T, Gapud AA, Paranthaman MP, Goyal A, Christen DK, IEEE Transactions on Applied Superconductivity, 15 (2): 2997-3000 Part 3, JUN 2005.

117.“High performance YBCO films by the hybrid of non-fluorine yttrium and copper salts with Ba-TFA,” Xu Y, Goyal A, Leonard K, Martin P, Physica C, 421 (1-4): 67-72 MAY 1 2005.

118.“Epitaxial growth of solution-based rare-earth niobate, RE₃NbO₇, films on biaxially textured Ni-W substrates,” Paranthaman M, Bhuiyan MS, Sathyamurthy S, Zhai HY, Goyal A, Salama K, J. of Materials Research, 20 (1): 6-9 JAN 2005.

119.“Oxidation of carbon on nickel-based metallic substrates: Implications for high-temperature superconductor coated conductors, List FA, Heatherly L, Lee DF, Leonard KJ, Goyal A JOURNAL OF MATERIALS RESEARCH 20 (3): 765-773 MAR 2005.

120.“Growth of rare-earth niobate-based pyrochlores on textured Ni-W substrates with ionic radii dependency,” Bhuiyan MS, Paranthaman M, Sathyamurthy S, Goyal A, Salama K, J. of Materials Research, 20 (4): 904-909 APR 2005.

121.“Growth of YBCO films on MgO-based rolling-assisted biaxially textured substrates templates,” Paranthaman MP, Aytug T, Zhai HY, Heatherly L, Goyal A, Christen DK, Supercond. Sci & Tech., 18 (3): 223-228 MAR 2005.

122.“Epitaxial Growth of Eu₃NbO₇ Buffer Layers on Biaxially Textured Ni-W Substrates,” M. S. Bhuiyan, M. Paranthaman, D. Beach, L. Heatherly, A. Goyal, E. A. Payzant and K. Salama,” in book titled “High-Temperature Superconductor Materials, Devices, and Applications,” edited by M. Paranthaman, P. N. Barnes, B. Holzapfel, Y. Yamada, K. Matsumoto and J. K. F. Yao, published by the American Ceramic Society, 2005, pgs. 35-42.

123.“Perovskite Type Buffers for YBCO Coated Conductors,” M. Parans Paranthaman, T. Aytug, H.Y. Zhai, A.A. Gapud, P.M. Martin, K.J. Leonard, A. Goyal, and D.K. Christen, in “Synthesis, Properties, and Crystal Chemistry of Perovskite-Based Materials: Proceedings of the 106th Annual Meeting of The American Ceramic Society,” Indianapolis, Indiana, USA 2004, Ceramic Transactions, Volume 169, Winnie Wong-Ng (Editor), Amit Goyal (Editor), Ruyan Guo (Editor), Amar S. Bhalla (Editor), 2005, pgs. 49-59.

124.“Ex-Situ Conversion of Physical Vapor Deposited YBCO Precursors on RABiTS,” D. F. Lee, F. A. List, R. Feenstra, H. Christen, L. Heatherly, K. Leonard, A. Goyal and M. Paranthaman, published in the proceedings of the Workshop on Coated Conductor & Applications (CCA2004) held in Kanagawa, Japan, Nov. 18-20, 2004.

125.“Recent Progress in the Fabrication of RABiTS,” A. Goyal, F. A. List, N. Rutter, D. Field, L. Heatherly, T. Aytug, C. Cantoni, A. Ijadoula, J. R. Thompson, D. F. Lee, S. Cook, M. Paranthaman, K. J. Leonard, S. Kang and D. Christen, published in the proceedings of the Workshop on Coated Conductor & Applications (CCA2004) held in Kanagawa, Japan, Nov. 18-20, 2004.

126.“High-J_c YBCO Superconductors on Rolling-Assisted-Biaxially-Textured-Substrates (RABiTS),” A. Goyal, M. Paranthaman and U. Schoop, invited paper, MRS Bulletin, Vol. 29, No.8, pp. 533-542, August 2004.

127. "Epitaxial Superconductors on Rolling-Assisted-Biaxially-Textured-Substrates (RABiTS)," A. Goyal, invited chapter in book titled "Second generation HTS Conductors" edited by A. Goyal, published in October, 2004 by Kluwer Academic Publishers, NY, 2004, pgs 3-22.

128. "Modeling Current Flow in Granular Superconductors," N. Rutter and A. Goyal, invited book chapter in book titled "Studies of High Temperature Superconductors", pp. 377-398, Springer, New York, 2004.

129. "High Performance YBCO Films by Hybrid of Non-fluorine Yttrium and Copper Salts with Ba-TFA," Y. Xu, A. Goyal and K. J. Leonard, Physica C 421 (1-4): 67-72, 2005.

130. "An Approach for Electrical Self-Stabilization of High Temperature Superconductors," T. Aytug, M. Paranthaman, H. Zhai, A. Gapud, K. Leonard, A. Goyal, J. Thompson, and D. Christen, Appl. Phys. Lett., 85 (2004) 2887-2889.

131. "Identification of a Self-limiting Reaction Layer in Ni-3at%W Rolling Assisted Biaxially Textured Substrates," K. J. Leonard, A. Goyal, S. Kang, K. A. Yarborough and D. M. Kroeger, Supercond. Sci. & Tech., 17 (2004) 1295-1302.

132. "Magnetism and Ferromagnetic Loss in Ni-W Textured Substrates for Coated Conductors," A. O. Ijaduola, J. Thompson, A. Goyal, C. Thieme and K. Marken, Physica C, 403 (2004) 163-171.

133. "Chemical Solution Deposition of Lanthanum Zirconate Barrier Layers Applied to Low-cost Coated-conductor Fabrication," S. Sathyamurthy, M. Paranthaman, H. Y. Zhai, S. Kang, T. Aytug, C. Cantoni, K. Leonard, E. A. Payzant, H. M. Christen, A. Goyal, X. Li, U. Schoop, T. Kodenkandath and M. Rupich, J. of Mater. Res., 19 (2004) 2117-2123.

134. "Effects of conversion parameters on the transport properties of YBCO films in the BaF₂ ex situ process," Yoo J, Leonard KJ, Lee DF, Hsu HS, Heatherly L, List FA, Rutter NA, Goyal A, Paranthaman M, Kroeger DM, J. of Mater. Res., 19 (2004) 1281-1289. (April issue)

135. "Progress in the Deposition of MgB₂ Films," X. X. Xi, A. V. Pogrebnyakov, X. H. Zeng, J. M. Redwing, S. Y. Xu, Qi Li, Zi-Kui Liu, J. Lettieri, V. Vaithyanathan, D. G. Schlom, H. M. Christen, H. Y. Zhai, and A. Goyal, Supercond. Sci. & Technology, 17 (2004) S196-201.

136. "Characterization of Suitable Buffer Layers on Cu and Cu-alloy Metal Substrates for the Development of Coated Conductors," Cantoni C, Christen DK, Specht ED, Varela M, Thompson JR, Goyal A, Thieme C, Xu Y, Pennycook SJ, Supercond. Sci. & Technology, 17 (2004) S341-344.

137. "Ni overlayers on biaxially textured Ni-alloy and Cu substrates by DC sputtering," Rutter NA, Goyal A, Vallet CE, List FA, Lee DF, Heatherly L, Kroeger DM, Supercond. Sci. & Technology, 17 (2004) 527-531.

138. "Detection of Interfacial Strain and Phase Separation in MBa₂Cu₃O_{7-x} Thin Films Using Raman Spectroscopy and X-ray Diffraction Space Mapping," Kartik Venkataraman, A. Jeremy Kropf, Carlo U. Segre, Quanxi Jia, A. Goyal, S. Chattopadhyay, Victor A. Maroni, Physica C, 402 (2004) 1-16.

139. "Oxidation of Carbon on Nickel-Based Metallic Substrates: Implications of Coated Conductors," F. A. List, L. Heatherly, D. F. Lee, K. Leonard and A. Goyal, J. of Mater. Res., 17 (2004) 765-773.

140. "Preparation of YBCO Films on CeO₂-Buffered (001) YSZ Substrates by a Non-Fluorine MOD Method," Yongli Xu, A. Goyal, N.A. Rutter, Donglu Shi and S. Sathyamurthy, J. of Am. Cer. Soc., 87 (2004) 1669-1676.

141. "Metal-Oxide Interfaces in Second Generation HTS Wires: Mechanism of Epitaxial Growth of Oxide Films Mediated by a Sulfur Superstructure," C. Cantoni, D. K. Christen, A. Goyal, L. Heatherly, F. A. List, E. D. Specht, M. A. Varela and S. J. Pennycook, published in book titled "Functional Growth of Epitaxial Oxides"

edited by A. Goyal and W. Wong-Ng, to be published by Kluwer Academic Publishers, NY, 2004.

142. "Modeling Current Percolation in Granular Superconductors," N. Rutter and A. Goyal, published in the proceedings of the symposium titled "**Functional Growth of Epitaxial Oxides**" edited by A. Goyal and W. Wong-Ng published by Kluwer Academic Publishers, NY, 2004.

143. "Deposition of (211_{~0.5nm}/123_{~15nm})xN Multilayer Coated Conductors on Ni-based Textured Substrates," T. Haugan, P. Barnes, R. Nekkanti, J. M. Evans, L. Brunke, I. Maartense, J. P. Murphy, A. Goyal, A. Gapud, L. Heatherly, published in the proceedings of the symposium titled "**Functional Growth of Epitaxial Oxides**" edited by A. Goyal and W. Wong-Ng published by Kluwer Academic Publishers, NY, 2004.

144. "Reel-to-reel ex situ conversion of high critical current density electron beam co-evaporated BaF₂ precursor on RABiTS," D. F. Lee, K. J. Leonard, L. Heatherly, F. A. List, S. W. Cook, J. Yoo, M. Paranthaman, P. M. Martin, A. Goyal and D. M. Kroeger, **Supercond. Sci. Technol.**, 17 (3): 386-394 MAR 2004.

145. "Pulsed Electron Deposition for Coated Conductors," Hong-Ying Zhai, Hans M. Christen, Ron Feenstra, Frederick A. List III, Amit Goyal, Keith J. Leonard, Yongli Xu, David K. Christen, Kartik Venkataraman, and Victor A. Maroni, **Mat. Res. Soc. Symp. Proc.** Vol. EXS-3, EE 1.8.1-1.8.3, published by Materials Research Society, 2004.

146. "Growth of Epitaxial Y2O₃ Film on Biaxially Textured NiW Substrates," M.S. Bhuiyan, M. Paranthaman, S. Sathyamurthy, T. Aytug, S. Kang, D. F. Lee, A. Goyal, E.A. Payzant and K. Salama, **Mat. Res. Soc. Symp. Proc.** Vol. EXS-3, EE 4.5.1-4.5.3, published by Materials Research Society, 2004.

147. "Critical Current Modeling for Coated Conductor Applications," N. Rutter and A. Goyal, **Mat. Res. Soc. Symp. Proc.** Vol. EXS-3, EE 5.24.1-5.24.3, published by Materials Research Society, 2004.

148. "Reel-to-reel Continuous Chemical Solution Deposition of Epitaxial Gd₂O₃ Buffer Layers on Biaxially Textured Metal Tapes for the Fabrication of YBCO Coated Conductors," T. Aytug, M. Paranthaman, B. Kang, D. Beach, S. Sathyamurthy, E. Specht, R. Feenstra, A. Goyal, D. Kroeger, K. Leonard, P. Martin and D. Christen, chapter in book titled "**Progress in High-Temperature Superconductors**", published by the American Ceramic Society, Westerville, OH, April, 2004, pgs 65-54.

149. "Control of the sulfur c(2x2) Superstructure on {100}<100> Textured Metal Templates for RABiTS Applications," C. Cantoni, D. Christen, L. Heatherly, F. List, A. Goyal, G. Ownby and D. Zehner, chapter in book titled "**Progress in High-Temperature Superconductors**", published by the American Ceramic Society, Westerville, OH, April, 2004, pgs. 85-100.

150. "An Economical Route for Production of High-Quality YSZ Buffer Layers using the ECONO process," M. A. Zurbuchen, S. Sambasivan, S. Barnett, B. Kang, A. Goyal, P. Barnes and C. E. Oberly, chapter in book titled "**Progress in High-Temperature Superconductors**", published by the American Ceramic Society, Westerville, OH, April, 2004, pgs. 133-146.

151. "YBCO Films Through a Fluorine Free TMAP MOD Approach," Y. Xu, D. Shi, A. Goyal, M. Paranthaman, N. A. Rutter, P. Martin and D. Kroeger, chapter in book titled "**Progress in High-Temperature Superconductors**", published by the American Ceramic Society, Westerville, OH, April, 2004, pgs. 175-182.

152. "Effect of Transverse Compressive Stress on Transport Critical Current Density of YBCO Coated Ni and NiW RABiTS Tapes," N. Cheggour, J. Ekin, C. Clickner, R. Feenstra, A. Goyal, M. Paranthaman and N. Rutter, chapter in book titled "**Progress in High-Temperature Superconductors**", published by the American Ceramic

Society, Westerville, OH, April, 2004, pgs. 183-196.

153. "Demonstration of High Current Density Films on all Solution Buffers," M. Paranthaman, S. Sathyamurthy, H. Zhai, H. Christen, S. Kang and A. Goyal, chapter in book titled "**Progress in High-Temperature Superconductors**", published by the American Ceramic Society, Westerville, OH, April, 2004, pgs. 255-260.

154. "Solution Buffer Layers for YBCO Coated Conductors," S. Sathyamurthy, M. Paranthaman, H. Zhai, S. Kang, C. Cantoni, S. Cook, L. Heatherly and A. Goyal, chapter in book titled "**Progress in High-Temperature Superconductors**", published by the American Ceramic Society, Westerville, OH, April, 2004, pgs. 261-266.

155. "Development of Conductive La_{0.7}Sr_{0.3}MnO₃ Buffer Layers for Cu-Based RABiTS," T. Aytug, M. Paranthaman, A. Goyal, A. Gapud, N. Rutter, H. Zhai and D. Christen, chapter in book titled "**Progress in High-Temperature Superconductors**", published by the American Ceramic Society, Westerville, OH, April, 2004, pgs. 281-284.

156. "Analytical Transmission Electron Microscopy of Thick YBCO Films on RABiTS," K. J. Leonard, S. Kang, B. Kang, A. Goyal, and D. Kroeger, chapter in book titled "**Progress in High-Temperature Superconductors**", published by the American Ceramic Society, Westerville, OH, April, 2004, pgs. 285-294.

157. "Reversible Axial-Strain Effect and Extended Strain Limits in Y-Ba-Cu-O Coatings on Deformation-Textured Substrates," N. Cheggour, J. W. Ekin, C. C. Clickner, D. T. Verebelyi, C. L. H. Thieme, R. Feenstra and A. Goyal, *Appl. Phys. Lett.*, 83 (2003) 4223-4225. (Nov. Issue)

158. "Uniform performance of continuously processed YBCO coated conductors," D. T. Verebelyi, U. Schoop, C. Thieme, X. Li, W. Zhang, T. Kodenkandath, A. P. Malozemoff, N. Nguyen, E. Siegal, D. Buczek, J. Lynch, J. Scudiere, M. Rupich, A. Goyal, E. D. Specht, P. Martin and M. Paranthaman, *Supercond. Sci. Technol.*, 16 (2003) L19-L22.

159. "Deposition and Characterization of YBa₂Cu₃O_{7-delta}/LaMnO₃/MgO/TiN Hetero-Structures on Cu Metal Substrates for Development of Coated Conductors," Cantoni, C., Christen, D.K., Varela, M., Thompson, J.R., Pennycook, S.J., Specht, E.D., Goyal, A. *J. Mater. Res.*, 18 (2003) 2387-2400. (Oct. issue)

160. "MOD approach for the growth of epitaxial CeO₂ buffer layers on biaxially textured Ni-W substrates for YBCO coated conductors," Bhuiyan MS, Paranthaman M, Sathyamurthy S, Aytug T, Kang S, Lee DF, Goyal A, Payzant EA, Salama K, *Supercond. Sci. & Technology*, 16 (2003) 1305-1309. (Nov. Issue)

161. "New approach to depositing yttria-stabilized zirconia buffer layers for coated conductors," Sambasivan S, Kim I, Barnett S, Zurbuchen MA, Ji J, Kang BW, Goyal A, Barnes PN, Oberly CE, *J. of Mat. Res.*, 18 (4): 919-928, 2003.

162. "Electrical and Magnetic Properties of Conductive Cu-based RABiTS," T. Aytug, M. Paranthaman, J. R. Thompson, A. Goyal, N. Rutter, H. Y. Zhai, A. A. Gapud, A. O. Ijadoula and D. K. Christen, *Appl. Phys. Lett.*, 83 (2003) 3963-3965. (Nov. Issue)

163. "Fabrication of high-critical current density YBa₂Cu₃O_{7-delta} films using a fluorine-free sol gel approach," Xu Y, Goyal A, Rutter NA, Shi D, Paranthaman M, Sathyamurthy S, Martin PM, Kroeger DM, *J. of Mat. Res.*, 18 (3): 677-681, 2003.

164. "High critical current density YBa₂Cu₃O_{7-delta} coatings on LaMnO₃-buffered biaxially textured Cu tapes for coated conductor applications," Aytug T, Goyal A, Rutter N, Paranthaman M, Thompson JR, Zhai HY, Christen DK, *J. of Mat. Res.*, 18 (4): 872-877, 2003.

165. "Reel-to-reel continuous chemical solution deposition of epitaxial Gd₂O₃ buffer layers on biaxially textured metal tapes for the fabrication of YBa₂Cu₃O_{7-delta} coated conductors," Aytug T, Paranthaman MP, Kang BWW, Beach DB, Sathyamurthy S,

Specht ED, Lee DF, Feenstra R, Goyal A, Kroeger DM, Leonard KJ, Martin PM, Christen DK, *J. of the Am. Cer. Soc.*, 86 (2): 257-265, 2003.

166. "Effect of Transverse Compressive Stress on Transport Critical Current Density of YBCO Coatings on Biaxially Textured Ni and Ni-W-Fe Substrates," N. Cheggour, J. Ekin, C. Clickner, R. Feenstra, A. Goyal, M. Paranthaman and N. Rutter, in book "Processing of High Temperature Superconductors," *Ceramic Transactions*, Vol. 140, edited by A. Goyal, W. Wong-Ng, M. Murakami and J. Driscoll, 2003, publisher: American Ceramic Society, pgs. 157-170.

167. "YBCO Films Through a Flourine Free TMAP MOD Approach," Y. Xu, D. Shi, A. Goyal, M. Paranthaman, N. Rutter, P. Martin and D. Kroeger, in book "Processing of High Temperature Superconductors," *Ceramic Transactions*, Vol. 140, edited by A. Goyal, W. Wong-Ng, M. Murakami and J. Driscoll, 2003, publisher: American Ceramic Society, pgs. 129-136.

168. "An Economical Route for Production of High-Quality YSZ Buffer Layers Using the ECONO™ Process," M. Zurbuchen, S. Sambasivan, B. Kang, A. Goyal, S. Barnett, P. A. Barnes, and C. Oberly, in book "Processing of High Temperature Superconductors," *Ceramic Transactions* Vol. 140, edited by A. Goyal, W. Wong-Ng, M. Murakami and J. Driscoll, 2003, publisher: American Ceramic Society, pgs. 77-90.

169. "Control of the Sulfur c (2 x2) Superstructure on {100}<100> Textured Metals for RABiTS Applications," C. Cantoni, D. Christen, L. Heatherly, F. List, G. Ownby and D. Zehner, in book "Processing of High Temperature Superconductors," *Ceramic Transactions* Vol. 140, edited by A. Goyal, W. Wong-Ng, M. Murakami and J. Driscoll, 2003, publisher: American Ceramic Society, pgs. 17-32.

170. "Development of conductive buffer layers for Cu-based RABiTS coated conductors," T. Aytug, M. Paranthaman, J. R. Thompson, A. Goyal, N. Rutter, H. Y. Zhai, A. A. Gapud, A. O. Ijaduola and D. K. Christen, *Appl. Phys. Lett.*, 83 (19): 3963-3965 NOV 10 2003.

171. "Microstructural Characterization of Thick $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$ Films on Improved Rolling-Assisted-Biaxially-Textured Substrates," K. J. Leonard, S. Kang, A. Goyal, K. Yarborough and D. M. Kroeger, *J. of Mater. Res.*, 18(5), 1109-1122, 2003.

172. "Microstructure Characterization of the Thickness Dependence of Critical Current Density of $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$ on Rolling-Assisted Biaxially Textured Substrates," K. J. Leonard, B. W. Kang, A. Goyal, D. M. Kroeger, S. Kang, J. W. Jones, M. Paranthaman, D. F. Lee, P. M. Martin and S. Sathyamurthy, *J. of Mater. Res.*, 18 (2003) 1109-1122.

173. "Development of Conductive $\text{La}_{0.7}\text{Sr}_{0.3}\text{MnO}_3$ Buffer Layers for Cu-Based RABiTS," T. Aytug, M. Paranthaman, A. Goyal, A. Gapud, N. Rutter, H. Y. Zhai and D. K. Christen, in book "Processing of High Temperature Superconductors," *Ceramic Transactions* Vol. 140, edited by A. Goyal, W. Wong-Ng, M. Murakami and J. Driscoll, 2003, publisher: American Ceramic Society, pgs. 119-128.

174. "Solution Processing of Lanthanum Zirconate Films as Single Buffer layers for High I_c YBCO Coated Conductors," S. Sathyamurthy, M. Paranthaman, H. Zhai, H. Christen, C. Cantoni, A. Goyal and P. Martin, *IEEE Trans. On Appl. Superconductivity*, 13(2): 2658-2660, Jun 2003.

175. "Growth of Oxide Seed Layers on Ni and Other technological Interesting Metal Substrates: Issues Related to Formation and Control of Sulfur Superstructures for Texture Optimization," C. Cantoni, D. Christen, A. Goyal, L. Heatherly, F. List, G. Ownby, D. Zehner, H. Christen and C. Rouleau, *IEEE Trans. On Appl. Superconductivity*, 13(2): 2646-2650, Jun 2003.

176. "LaMnO₃: A Single Oxide Buffer Layer for High-Jc YBCO Coated Conductors," T. Aytug, M. Paranthaman, S. Kang, H. Zhai, H. Christen, C. Vallet, S. Sathyamurthy, A. Goyal and D. K. Christen, *IEEE Trans. On Appl. Superconductivity*, 13(2): 3530-3533, Jun 2003.

177. "Transverse Compressive Stress Effect in YBCO Coatings on Biaxially Textured Ni and Ni-5at%W Substrates," N. Cheggour, J. Ekin, C. Clickner, D. Verebelyi, C. Thieme, A. Malozemoff, R. Feenstra, A. Goyal and M. Paranthaman, IEEE Trans. On Appl. Superconductivity, 13(2): 2661-2664, Jun 2003.

178. "YBCO Coated Conductors by a MOD Process," Rupich, M.W.; Schoop, U.; Verebelyi, D.T.; Thieme, C.; Zhang, W.; Li, X.; Kodenkandath, T.; Nguyen, N.; Siegal, E.; Buczek, D.; Lynch, J.; Jowett, M.; Thompson, E.; Wang, J.-S.; Scudiere, J.; Malozemoff, A.P.; Li, Q.; Annavarapu, S.; Cui, S.; Fritzemeier, L.; Aldrich, B.; Craven, C.; Niu, F.; Schwall, R.; Goyal, A.; Paranthaman, M.; IEEE Trans. On Appl. Superconductivity, 13(2): 2458-2461, Jun 2003.

179. "Strengthened, biaxially textured Ni substrate with small alloying additions for coated conductor applications," A. Goyal, R. Feenstra, M. Paranthaman, J. R. Thompson, B. Y. Kang, C. Cantoni, D. F. Lee, F. A. List, P. M. Martin, E. Lara-Curzio, C. Stevens, D. M. Kroeger, M. Kowaleski, E. D. Specht, T. Aytug, S. Sathyamurthy, R. K. Williams and R. E. Ericson, Physica C, 382 (2002) 251-262.

180. "Comparative study of thickness dependence of critical current density of $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$ on (100) SrTiO_3 and on rolling-assisted biaxially textured substrates," Kang BW, Goyal A, Lee DR, Mathis JE, Specht ED, Martin PM, Kroeger DM, Paranthaman M, Sathyamurthy S, J. of Mat. Res., 17 (7): 1750-1757, 2002.

181. "Ni-Cr textured substrates with reduced ferromagnetism for coated conductor applications," Thompson JR, Goyal A, Christen DK, Kroeger DM, Physica C, 370 (3): 169-176, 2002.

182. "Uniform texture in meter-long $\text{YBa}_2\text{Cu}_3\text{O}_7$ tape," Physica C: Superconductivity, Volume 382, Issues 2-3, 1 November 2002, Pages 342-348, E. D. Specht, F. A. List, D. F. Lee, K. L. More, A. Goyal, W. B. Robbins and D. O'Neill.

183. "Chemical solution deposition of lanthanum zirconate buffer layers on biaxially textured Ni-1.7% Fe-3% W alloy substrates for coated-conductor fabrication," Sathyamurthy S, Paranthaman M, Aytug T, Kang BW, Martin PM, Goyal A, Kroeger DM, Christen DK, J. of Mat. Res., 17 (6): 1543-1549 JUN 2002.

184. "Epitaxial titanium diboride films grown by pulsed-laser deposition," Zhai HY, Christen HM, Cantoni C, Goyal A, Lowndes DH, Appl. Phys. Lett., 80 (11): 1963-1965, 2002.

185. "Bulk solution techniques to fabricate high J_c $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$ coated conductors," Paranthaman MP, Aytug T, Sathyamurthy S, Beach DB, Goyal A, Lee DF, Kang BW, Heatherly L, Specht ED, Leonard KJ, Christen DK, Kroeger DM, Physica C, 378: 1009-1012 Part 2, 2002.

186. "Quantification and control of the sulfur c(2 x 2) superstructure on {100}(100) Ni for optimization of YSZ, CeO_2 , and SrTiO_3 seed layer texture, Cantoni C, Christen DK, Heatherly L, Kowaleski MM, List FA, Goyal A, Ownby GW, Zehner DM, Kang BW, Kroeger DM, J. of Mat. Res., 17 (10): 2549-2554 OCT 2002.

187. "Lanthanum zirconate: A single buffer layer processed by solution deposition for coated conductor fabrication," S. Sathyamurthy, M. Paranthaman, H-Y. Zhai, H.M. Christen, P.M. Martin, A. Goyal, J. of Mater. Res., vol. 17, pg. 2181-2184, 2002.

188. "Growth of YBCO thin films on TiN(001) and CeO_2 -coated TiN surfaces," I. Kim, P. Barnes, A. Goyal, S. Barnett, R. Biggers, G. Kozlowski, C. Varanasi, I. Maartens, R. Nekkanti, T. Peterson, T. Haugan and S. Sambasivan, Physica C, 377 (2002) 227-234.

189. "Microstructure of pulsed laser deposited $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$ films on yttria-stabilized zirconia/ CeO_2 buffered biaxially textured Ni substrates," Yang CY, Babcock SE, Ichinose A, Goyal A, Kroeger DM, Lee DF, List FA, Norton DP, Mathis JE, Paranthaman M, Park C, Physica C, 377 (3): 333-347 SEP 1 2002

190. "High- J_c YBCO Coatings on Reel-to-Reel Dip-Coated Gd_2O_3 Seed Buffer layers Epitaxially Fabricated on Biaxially Textured Ni and Ni-(3at%W-1.7at%Fe) Alloy

Tapes," T. Aytug, M. Paranthaman, S. Sathyamurthy, B. Kang, D. Beach, C. Vallet, E. Specht, D. Lee, R. Feenstra, A. Goyal, D. Kroeger, K. Leonard, P. Martin and D. Christen, **Material Research Society, Symposium Proceedings**, Volume No. 689, pg. 211-216, edited by M. Paranthaman, M. Rupich, K. Salama, J. Mannhart and T. Hasegawa, 2002.

191. "Progress Towards a Low-Cost Commercial Coated Conductor," S. Annavarapu, N. Nguyen, S. Cui, U. Schoop, C. Thieme, M. Rupich, T. Kodenkandath, D. Verebelyi, W. Zhang, X. Li, Q. Li, M. Paranthaman, A. Goyal, C. Cantoni, M. Kowaleski and F. List, **Material Research Society, Symposium Proceedings**, Volume No. 689, pg. 231-237, edited by M. Paranthaman, M. Rupich, K. Salama, J. Mannhart and T. Hasegawa, 2002.

192. "Effect of Sulfur Surface Structure on Nucleation of Oxide Seed Layers on Textured Metals for Coated Conductor Applications," C. Cantoni, D. Christen, A. Goyal, L. Heatherly, G. Ownby, D. Zehner, D. Norton, C. Rouleau and H. Christen, **Material Research Society, Symposium Proceedings**, Volume No. 689, pg. 349-354, edited by M. Paranthaman, M. Rupich, K. Salama, J. Mannhart and T. Hasegawa, 2002.

193. "Fabrication of High-J_c YBCO Coated Conductors Using Sol-Gel Buffer layers on Ni and Ni Alloy Substrates," S. Sathyamurthy, M. Paranthaman, B. Kang, H. Christen, E. Specht, M. Kowaleski, A. Goyal and P. Martin, **Material Research Society, Symposium Proceedings**, Volume No. 689, pg. 357-362, edited by M. Paranthaman, M. Rupich, K. Salama, J. Mannhart and T. Hasegawa, 2002.

194. "Microstructural Characterization of YBCO Films Grown by a Flourine-free MOD Process," Y. Xu, J. Lian, A. Goyal, D. Shi, M. Paranthaman, N. Rutter, L. Wang, P. Martin and D. Kroeger, **Physica C**, 2002.

195. "(La,Sr)TiO₃ as a candidate buffer for RABiTS coated conductors," D. P. Norton, K. Kim, D. K. Christen, J. D. Budai, B. C. Sales, M. F. Chisholm, D. M. Kroeger, A. Goyal, and C. Cantoni, **Physica C**, 372-376 (2002) 818-820.

196. "Recent progress in the fabrication of high-J(c) tapes by epitaxial deposition of YBCO on RABiTS," Goyal A, Lee DF, List FA, Specht ED, Feenstra R, Paranthaman M, Cui X, Lu SW, Martin PM, Kroeger DM, Christen DK, Kang BW, Norton DP, Park C, Verebelyi DT, Thompson JR, Williams RK, Aytug T, Cantoni C, **Physica C**, 357: 903-913, 2001.

197. "Reflection high-energy electron diffraction studies of epitaxial oxide seed-layer growth on rolling-assisted biaxially textured substrate Ni(001): The role of surface structure and chemistry," Cantoni C, Christen DK, Feenstra R, Goyal A, Ownby GW, Zehner DM, Norton DP, **Appl. Phys. Lett.**, 79 (19): 3077-3079, 2001.

198. "Inter- and intragrain transport measurements in YBa₂Cu₃O_{7-δ} deformation textured coated conductors," Feldman DM, Larbalestier DC, Verebelyi DT, Zhang W, Li Q, Riley GN, Feenstra R, Goyal A, Lee DF, Paranthaman M, Kroeger DM, Christen DK, **Appl. Phys. Lett.**, 79 (24): 3998-4000 DEC 10 2001.

199. "Effect of calcium doping in low angle grain boundaries of YBCO on RABiTS," B. W. Kang, A. Goyal, F. A. List, D. K. Christen, H. Kerchner, S. Sathyamurthy, D. F. Lee, P. M. Martin and D. M. Kroeger, **Proc. 2001 Int. Workshop on Superconductivity**, pg. 170-172, June 24-47, Honolulu, Hawaii, 2001.

200. "Progress towards a low-cost commercial coated conductor," S. Annavarapu, N. Nguyen, S. Cui, U. Schoop, C. Thieme, M. Rupich, T. Kodenkandath, D. Verebelyi, W. Zhang, X. Li, Q. Li, M. Paranthaman, A. Goyal, C. Cantoni, M. Kowaleski and F. A. List, published in the **Proc. Of the MRS'2001 Fall Meeting**.

201. "Effects of surface chemistry and structure on buffer layer epitaxy," C. Cantoni, D. K. Christen, D. P. Norton, R. Feenstra, A. Goyal, G. W. Ownby and D. M. Zehner, **Proc. 2001 Int. Workshop on Superconductivity**, pg. 29-31, June 24-47, Honolulu, Hawaii, 2001.

202. "Progress in TFA solution processed YBCO coated conductors," C. Thieme, E. Thompson, S. Annavarapu, Q. Li, W. Zhang, M. W. Rupich, M. Paranthaman, A.

Goyal, D. F. Lee, E. D. Specht and F. A. List, Proc. **2001 Int. Workshop on Superconductivity**, pg. 233-235, June 24-47, Honolulu, Hawaii, 2001.

203. "Inter and Intra grain transport measurements in YBCO deformation textured coated conductors," D. M. Feldman, D. C. Larbalestier, D. T. Verebelyi, W. Zhang, Q. Li, G. N. Riley, R. Feenstra, A. Goyal, D. F. Lee, M. Paranthaman, D. M. Kroeger and D. K. Christen, **Proc. 2001 Int. Workshop on Superconductivity**, pg. 257-259, June 24-47, Honolulu, Hawaii, 2001.

204. "La_{0.7}Sr_{0.3}MnO₃: a single, conductive-oxide buffer layer for the development of YBaCuO coated conductors," T. Aytug, M. Paranthaman, B. W. Kang, S. Sathyamurthy, A. Goyal and D. K. Christen, **Appl. Phys. Lett.**, 79, 2205, (2001).

205. "Fabrication of long lengths of epitaxial buffer layers on biaxially textured-Ni substrates using a continuous reel-to-reel dip-coating unit," M. Paranthaman, T.G. Chirayil, F.A. List, X. Cui, A. Goyal, D.F. Lee, E.D. Specht, P.M. Martin, R.K. Williams, D.M. Kroeger, J.S. Morrell, D.B. Beach, R. Feenstra, and D.K. Christen, "**J. Amer. Ceram. Soc.** 84, 273-278 (2001).

206. "Continuous Deposition of Ex-Situ YBCO Precursor Films on Rolling-Assisted Biaxially Textured Substrates by Electron Beam Evaporation," X. Cui, F.A. List, D.M. Kroeger, D.F. Lee, M. Paranthaman, A. Goyal, B.W. Kang, E.D. Specht, and P.M. Martin, **Physica C** 351, 175-181 (2001).

207. "Low Cost Y-Ba-Cu-O Coated Conductors," M.W. Rupich, Q. Li, S. Annavarapu, C. Thieme, W. Zhang, V. Prunier, M. Paranthaman, A. Goyal, D.F. Lee, E.D. Specht, and F.A. List, **IEEE Trans. on Applied Superconductivity**, 11, 2927-2930 (2001).

208. "Magneto-Optical Imaging of Transport Currents in YBa₂Cu₃O_{7-x} on RABiTS™," D. Matthew Feldman, Jodi L Reeves, Anatolii A. Polyanskii, Amit Goyal, Ron Feenstra, D.F. Lee, M. Paranthaman, D.M. Kroeger, D.K. Christen, Sue E. Babcock, David C. Larbalestier, **IEEE Trans. on Applied Superconductivity**, 11, 3772-3775 (2001).

209. "Progress in solution-based YBCO coated conductors," Q. Li, W. Zhang, U. Schoop, M.W. Rupich, S. Annavarapu, D.T. Verebelyi, C.L.H. Thieme, V. Prunier, X. Cui, M.D. Teplitsky, L.G. Fritzemeier, G.N. Riley, M. Paranthaman, A. Goyal, D.F. Lee, and T.G. Holesinger, **Physica C** 357, 987-990 (2001).

210. "Electron beam co-evaporation of Y-BaF₂-Cu precursor films for YBa₂Cu₃O_{7-y} coated conductors," S.W. Lu, F.A. List, X. Cui, M. Paranthaman, B.W. Kang, D.M. Kroeger, A. Goyal, P.M. Martin, and R.E. Ericson, **Supercond. Sci. Tech.** 14, 218-223 (2001).

211. "Fabrication of Long Lengths of YBCO Coated Conductors using a Continuous Reel-to-Reel Dip-Coating Unit," M. Paranthaman, T.G. Chirayil, S. Sathyamurthy, D.B. Beach, A. Goyal, F.A. List, D.F. Lee, X. Cui, S.W. Lu, B. Kang, E.D. Specht, P.M. Martin, D.M. Kroeger, R. Feenstra, C. Cantoni, and D.K. Christen, **IEEE Trans. on Applied Superconductivity** 11, 3146-3149 (2001).

212. "High current density coated YBCO coated conductors on strengthened, biaxially textured Ni-W substrates," M. Paranthaman, S. Sathyamurthy, T. Aytug, D. Beach, A. Goyal, B. W. Kang, R. Feenstra, D. K. Christen, D. F. Lee, P. M. Martin, L. Heatherly and D. M. Kroeger, Proc. **2001 Int. Workshop on Superconductivity**, pg. 87-90, June 24-47, Honolulu, Hawaii, 2001.

213. "Bilayer conductive oxide buffer layer structures for high-J_c YBCO coated conductors," T. Aytug, B. W. Kang, D. T. Verebelyi, C. Cantoni, S. Sathyamurthy, A. Goyal, P. M. Martin, M. Paranthaman and D. K. Christen, Proc. **2001 Int. Workshop on Superconductivity** pg. 90-92, June 24-47, Honolulu, Hawaii, 2001.

214. "Solution deposition approaches to coated conductor fabrication on biaxially textured Ni-W substrates," S. Sathyamurthy, B. W. Kang, M. Paranthaman, T. Aytug, R. Feenstra, A. Goyal and D. M. Kroeger, **2001 Int. Workshop on Superconductivity**, pg. 93-96, June 24-47, Honolulu, Hawaii, 2001.

Superconductivity pg. 119-121, June 24-47, Honolulu, Hawaii, 2001.

215.“Grain Boundaries in High-Tc Superconductors – Data, Ideas and Prospects,” J. Mannhart, G. Hammerl, H. Bielefeldt, H. Hilgenkamp, S. Leitenmeier, A. Schmehl, C. W. Schneider, R. R. Schultz, A. Goyal, B. W. Kang, F. A. List, D. K. Christen and D. M. Kroeger, Published in the Proc. Of the 2001 IWCC Conference, Göttingen, Germany, May, 2001.

216.Growth and characterization of conductive SrRuO₃ and LaNiO₃ multilayers on textured Ni tapes for high-J(c) YBa₂Cu₃O_{7-d} coated conductors, Aytug T, Kang BW, Cantoni C, Specht ED, Paranthaman M, Goyal A, Christen DK, Verebelyi DT, Wu JZ, Ericson RE, Thomas CL, Yang CY, Babcock SE, J. of Mater. Res. 16 (9): 2661-2669 SEP 2001.

217.Recent progress in the fabrication of high-J(c) tapes by epitaxial deposition of YBCO on RABiTS, Goyal A, Lee DF, List FA, Specht ED, Feenstra R, Paranthaman M, Cui X, Lu SW, Martin PM, Kroeger DM, Christen DK, Kang BW, Norton DP, Park C, Verebelyi DT, Thompson JR, Williams RK, Aytug T, Cantoni C, Proc. of the ISS'2000, Advances in Superconductivity XIII, Part II, pg. 903-913, 2001.

218.“Fabrication of Long Lengths of Epitaxial Buffer Layers on Biaxially Textured-Ni Substrates Using a Continuous Reel-to-Reel Dip-Coating Unit,” Paranthaman, M., T. G. Chirayil, F. A. List, X. Cui, A. Goyal, D. F. Lee, E. D. Specht, P. M. Martin, R. K. Williams, D. M. Kroeger, J. S. Morrell, C. B. Beach, R. Feenstra, and D. K. Christen, Journal of American Ceramic Society, 84(2): 273-278, Feb. 2001.

219.“Grain Boundary Character Based Design of Polycrystalline High Temperature Superconducting Wires,” A. Goyal, in the book titled “Electron Backscatter Diffraction in Materials Science” edited by A. J. Schwartz, M. Kumar and B. L. Adams, Kluwer Academic / Plenum Publishers, pgs. 319-333, 2000.

220.“Factors Affecting the Critical Current Density of Epitaxial HTS on RABiTS,” A. Goyal, E. D. Specht, R. Feenstra, D. F. Lee, F. A. List, M. Paranthaman, D. Kroeger and D. K. Christen, published in the Proc. of the IWCC'2000, Fukuoka, Japan, Oct. 2000.

221.B.L. Adams, B. Henrie, and A. Goyal, “Microstructure-Sensitive Compliant Mechanism Design,” in Plastic and Viscoplastic Response of Materials and Metal Forming, eds. A. S. Khan, H. Zhang, and Y. Yuan, NEAT Press, Fulton, MD (2000) p. 513-515.

222.“Microstructural homogeneity and electromechanical connectivity of YBa₂Cu₃O_{7-δ} grown on rolling-assisted biaxially textured coated conductor substrates,” C.-Y. Yang, A. Pashitski, A. Polyanskii, D.C. Larbalestier, S.E. Babcock, A. Goyal, F.A. List, C. Park, M. Paranthaman, D.P. Norton, D.F. Lee, and D.M. Kroeger, Physica C 329, 114-120 (2000).

223.“Demonstration of High Current Density YBCO Coated Conductors on RE₂O₃-Buffered Ni Substrates with Two New Alternative Architectures,” M. Paranthaman, R. Feenstra, D.F. Lee, D.B. Beach, J.S. Morrell, T.G. Chirayil, A. Goyal, X. Cui, D.T. Verebelyi, J.E. Mathis, P.M. Martin, D.P. Norton, E.D. Specht, D.K. Christen, and D.M. Kroeger, Advances in Cryogenic Engineering, Kluwer Academic/Plenum Publishers, New York, Edited by U. Balu Balachandran, D.U. Gubser, K. Ted Hartwign and V.A. Bardos, Vol. 46, Part B, pp. 879-886 (2000).

224.“Epitaxial yttria-stabilized zirconia on biaxially-textured (001) Ni for YBCO coated conductor, Park C, Norton DP, Lee DF, Verebelyi DT, Goyal A, Christen DK, Budai JD, Physica C, 341: 2481-2482, Part 4 NOV 2000.

225.“Low angle grain boundary transport in YBa₂Cu₃O_{7-δ} coated conductors,” D.T. Verebelyi, D.K. Christen, R. Feenstra, C. Cantoni, A. Goyal, D.F. Lee, M. Paranthaman, P.N. Arendt, R.F. DePaula, J.R. Groves, and C. Prouteau, Appl. Phys. Lett. 76, 1755-1757 (2000).

226.“Low-cost YBCO Coated Conductor Technology,” A.P. Malozemoff, S.

Annavarapu, L. Fritzemeier, Q. Li, V. Prunier, M. Rupich, C. Thieme, W. Zhang, A. Goyal, M. Paranthaman, and D.F. Lee, Superconductor Sci. & Technol. 13, 473-476 (2000).

227.“Epitaxial growth of $\text{La}_2\text{Zr}_2\text{O}_7$ thin films on rolled Ni-substrates by sol-gel process for high T_c superconducting tapes,” T.G. Chirayil, M. Paranthaman, D.B. Beach, D.F. Lee, A. Goyal, R.K. Williams, X. Cui, D.M. Kroeger, R. Feenstra, D.T. Verebelyi, and D.K. Christen, Physica C 336, 63-69 (2000).

228.“YBCO Coated Conductors with High Engineering Current Density,” M. Paranthaman, C. Park, X. Cui, A. Goyal, D.F. Lee, P.M. Martin, T.G. Chirayil, D.T. Verebelyi, D.P. Norton, D.K. Christen, and D.M. Kroeger, J. Mater. Res. 15, 2647-2652 (2000).

229.“Epitaxy of $\text{HgBa}_2\text{CaCu}_2\text{O}_6$ superconducting films on biaxially textured Ni substrates, Xie YY, Aytug T, Wu JZ, Verebelyi DT, Paranthaman M, Goyal A, Christen DK, Appl. Phys. Lett., 77 (25): 4193-4195 DEC 18 2000.

230.“Progress Towards A Low-Cost Conductor Technology,” S. Annavarapu, L. Fritzemeier, Q. Li, A. Malozemoff, V. Prunier, M.W. Rupich, C. Thieme, W. Zhang, M. Gopal, I. Seleznev, M.J. Cima, M. Paranthaman, A. Goyal, and D.F. Lee, Physica C 341-348, 2319-2322 (2000).

231.“An all-sputtered buffer layer architecture for high- J_c $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$ coated conductors,” T. Aytug, J.Z. Wu, B.W. Kang, D.T. Verebelyi, C. Cantoni, E.D. Specht, A. Goyal, and M. Paranthaman, Physica C 340, 33-40 (2000).

232.B. L. Adams, B. Henrie, and A. Goyal, "Microstructure-Sensitive Compliant Mechanism Design," in Plastic and Viscoplastic Response of Materials and Metal Forming, eds. A. S. Khan, H. Zhang, and Y. Yuan, NEAT Press, Fulton, MD (2000) p. 513-515 (invited).

233.“Epitaxial Growth of Gadolinium Oxide on Roll-textured Nickel”, J. S. Morrell, A. B. Xue, E. D. Specht, A. Goyal, P.M. Martin, D. F. Lee, R. Feenstra, D. T. Verebelyi, D. K. Christen, T. G. Chirayil, M. Paranthaman, C. E. Vallet and D. B. Beach, J. Mater. Res., 15, 621, 2000.

234.“Scaling of Percolative Current Flow to Long Lengths in Biaxially Textured Conductors,” E. D. Specht, A. Goyal and D. M. Kroeger, Supercond. Sci. & Technology, 13, 592, 2000.

235.“High Current Density $\text{HgBa}_2\text{CaCu}_2\text{O}_6$ Superconductivity Films on Textured Ni Substrates,” Xie, Y. Y., T. Aytug, J. Z. Wu, D. T. Verebelyi, M. Paranthaman, A. Goyal, and D. K. Christen, Appl. Phys. Lett., 77(25): 4193-4195, Dec. 2000.

236.“Nucleation of Epitaxial Yttria-Stabilized Zirconia on Biaxially Textured (001) Ni for Deposited Conductors,” Park, C., D. P. Norton, D. T. Verebelyi, D. K. Christen, J. D. Budai, D. F. Lee, and A. Goyal, App. Phys. Lett. 76, 2427 (2000).

237.“Microstructural homogeneity and electromagnetic connectivity of $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$ grown on rolling-assisted biaxially textured coated conductor substrates,” Yang C.Y., Pashitski A., Polyanskii A., Larbalestier D.C., Babcock S.E., Goyal A., List F.A., Park C., Paranthaman M., Norton D.P., Lee D.F., Kroeger D.M., Physica C 329, 114, 2000.

238.“Transport and structural characterization of epitaxial $\text{Nd}_{1+x}\text{Ba}_{2-x}\text{Cu}_3\text{O}_y$ thin films grown on LaAlO_3 and Ni metal substrates by pulsed-laser deposition,” C. Cantoni, D.P. Norton, D.K. Christen, A. Goyal, D.M. Kroeger, D.T. Verebelyi, M. Paranthaman, Physica C 324, 177-186 (1999).

239.“Texture Formation and Grain Boundary Networks in Rolling Assisted Biaxially Textured Substrates (RABiTS) and in Epitaxial YBCO Films on such Substrates”, A. Goyal, S. X. Ren, E. D. Specht, D. M. Kroeger, R. Feenstra, D. Norton, M. Paranthaman, D. F. Lee and D. K. Christen, Micron, 30, 463-478, 1999.

240.“Using RABiTS to Fabricate High-temperature Superconducting Wire”, A. Goyal, R. Feenstra, F. A. List, T. Chirayil, D. T. Verebelyi, X. Cui, E. D. Specht, D. K. Christen, and P. M. Martin, JOM, July 1999 – 21st Century Technologies, 51

(1999) 19.

241. "Texture Development, Recrystallization, and Transference of Texture Between Ceramic Multilayers Epitaxially Grown on RABiTS," A. Goyal, R. Feenstra, E. D. Specht, D. M. Kroeger, D. F. Lee, M. Paranthaman, F. A. List and D. K. Christen, published in the Proceedings of the ICOTOM12 Conference, 1999.

242. "Transport and Structural Characterization of $Nd_{1+x}Ba_{2-x}Cu_3O_y$ thin Films grown on $LaAlO_3$ and Ni Metal Substrates by Pulsed Laser Ablation", C. Cantoni, D. P. Norton, D. K. Christen, A. Goyal, D. M. Kroeger, D. T. Verebelyi and M. Paranthaman, Physica C, 324, 177, 1999.

243. "Epitaxial Growth of Yb_2O_3 Buffer Layers on Biaxially Textured-Ni (100) substrates by Sol-gel Process" T.G. Chirayil, M. Paranthaman, D.B. Beach, J.S. Morrell, E.Y. Sun, A. Goyal, R.K. Williams, D.F. Lee, P.M. Martin, D.M. Kroeger, R. Feenstra, D.T. Verebelyi, and D.K. Christen, Mat. Res. Soc. Symp. Proc. 574, 51-56 (1999).

244. "Response of superconducting characteristics of Hg-based high T_c thin films to photolithographic processes," C. Cantoni, D.P. Norton, D.K. Christen, A. Goyal, D.M. Kroeger, D.T. Verebelyi, and M. Paranthaman, Physica C 325, 56-60 (1999).

245. "Low-cost YBCO Coated Conductor Technology," A.P. Malozemoff, S. Annavarapu, L. Fritzemeier, Q. Li, V. Prunier, M. Rupich, C. Thieme, W. Zhang, A. Goyal, M. Paranthaman, and D.F. Lee, Published in the EUCAS meeting Proc., Spain, September 1999.

246. "Effects of Grain Boundaries on Critical Currents of Coated Conductors", D. T. Verebelyi, R. Feenstra, A. Goyal and D. K. Christen, C. Prouteau, P. N. Arendt, R. F. DePaula and J. R. Grooves, Proc. of the International Workshop on Critical Currents, p. 51, Wisconsin, July, 1999.

247. "Alternating Transport-Current Flow in Superconducting Films – The Important Role of a Geometrical Barrier to Vortex Motion", H. R. Kerchner, D. P. Norton, A. Goyal, J. D. Budai, D. K. Christen, D. M. Kroeger, M. Paranthaman, D. F. Lee, F. A. List, R. Feenstra and E. H. Brandt, Physical Review B, 60, (1999) 6878.

248. "Growth of Biaxially Textured Re_2O_3 Buffer Layers on Rolled Ni Substrates Using Reactive Evaporation for HTS Coated Conductors", M. Paranthaman, D. F. Lee, A. Goyal, E. D. Specht, P. M. Martin, X. Cui, J. E. Mathis, R. Feenstra, D. K. Christen and D. M. Kroeger, Supercond. Sci & Tech., 12, 319, 1999.

249. "Alternating Current Losses in Biaxially Textured YBCO Films Deposited on Ni Tapes," Kerchner HR, Norton DP, Goyal A, Budai JD, Christen DK, Kroeger DM, Specht ED, He Q, Paranthaman M, Lee DF, Sales BC, List FA, Feenstra R, Appl. Phys. Lett., 71(4): 2029-2031, Oct. 1997.

250. "Alternative Buffer Architectures for High- J_c YBCO Superconducting Deposits on RABiTS", D. F. Lee, M. Paranthaman, J. E. Mathis, A. Goyal, D. M. Kroeger, E. D. Specht, R. K. Williams, F. A. List, P. M. Martin, C. Park, D. Norton and D. K. Christen, Jap. J. of Appl. Phys., 38(2B), L178-180, 1998.

251. "Continuous Growth of Epitaxial CeO_2 Buffer Layers on Rolled Ni Tapes By Electron Beam Evaporation," X. Cui, F. A. List, D. M. Kroeger, A. Goyal, D. F. Lee, J. E. Mathis, E. D. Specht, P. M. Martin, R. Feenstra, D. T. Verebelyi, D. K. Christen and M. Paranthaman, Physica C, 316, 27, 1999.

252. "Demonstration of High Current Density YBCO Coated Conductors on Re_{203} -Buffered Ni Substrates With Two New Alternative Architectures," Paranthaman, M., R. Feenstra, D. F. Lee, D. B. Beach, J. S. Morrell, T. G. Chirayil, A. Goyal, X. Cui, D. T. Verebelyi, J. E. Mathis, P. M. Martin, D. P. Norton, E. D. Specht, D. K. Christen, and D. M. Kroeger, Advances in Cryogenic Engineering, ed. By Plenum Publishing Corporation, 1999.

253. "Optimization of Buffer Layers on Rolled-Ni Substrates for High Current YBCO and Tl, Bi-1223 Coated Conductors Using Ex-Situ Precursor Approaches," Paranthaman, M., D. F. Lee, R. Feenstra, A. Goyal, D. T. Verebelyi, D. K. Christen, E. D. Specht, F. A. List, P. M. Martin, D. M. Kroeger, Z. F. Ren, W. Li, D. Z. Wang, J. Y. Lao, and J. H. Wang, p. 2268 in IEEE Trans. Appl. Superconduct., 9(2), June 1999, Pages: 2268-2271.

254. "High Resolution TEM/AEM Characterization of Epitaxial Oxide Multilayers Fabricated by Laser Ablation on Biaxially Textured Ni, E. Y. Sun, A. Goyal et al., *Physica C*, 321, 29, 1999.

255. "Fabrication of high current YBCO coated conductors on RABiTS, M. Paranthaman, F. A. List, D. F. Lee, A. Goyal, R. Feenstra, D. P. Norton, C. Park, D. T. Verebelyi, D. K. Christen, P. M. Martin, E. D. Specht and D. M. Kroeger, To be published in the proceedings of the **9th CIMTEC Congress and Forum on New Materials**, Florence, Italy, June 14-19, 1999, p. 185, Ed. by P. Vincenzini, Techna Srl.

256. "Growth of textured buffer layers and superconductors on rolled-Ni substrates using sol-gel alkoxide precursors", M. Paranthaman, S. S. Shoup, D. B. Beach, J. S. Morell, A. Goyal, E. D. Specht, J. E. Mathis, D. T. Verebelyi and D. K. Christen, To be published in the proceedings of the **9th CIMTEC Congress and Forum on New Materials**, Florence, Italy, June 14-19, 1999, p. 169, Ed. by P. Vincenzini, Techna Srl.

257. "In-plane Aligned Superconducting $Tl_{0.8}Bi_{0.22}Sr_{1.6}Ba_{0.4}Ca_2Cu_3O_9$ Films on RABiTS", Z. F. Ren, W. Li, Z. Wang, J. Y. Lao, J. H. Wang, M. Paranthaman, D. Verebelyi, D. Christen, D. Lee, A. Goyal and D. M. Kroeger, *Physica C*, 313, 341, 1999.

258. "Superconducting Thallium Oxide Films from Electrodeposited Precursors", R. N. Bhattacharya, P. A. Parilla, R. D. Blaughter, Z. F. Ren, W. Li, J. H. Wang, Y. T. Yang, A. M. Hermann, M. Paranthaman, A. Goyal, D. Verebelyi and D. Christen, Proc. of the 1998 Applied Superconductivity Conference, Palm Desert, CA, *IEEE Transactions*, 9(2): 1681-1683, 1999.

259. "Optimization of Buffer Layers on Rolled-Ni Substrates for High Current YBCO and $Tl_2Bi-1223$ Coated Conductors Using Ex-situ Precursor Approaches", M. Paranthaman, D. Lee, R. Feenstra, A. Goyal, D. Verebelyi, D. Christen, E. Specht, F. List, P. Martin and D. M. Kroeger, Proc. of the 1998 Applied Superconductivity Conference, Palm Desert, CA, *IEEE Transactions*, 9(2): 2268-2271, 1999.

260. "Electromagnetic Connectivity and Microstructure in YBCO Films on RABiTS Substrates," Babcock SE, Yang CY, Reeves JL, Wu Y, Pashitski AE, Polyaniskii A, Larbalestier DC, Goyal A, Paranthaman M, List FA, Norton DP, Kroeger DM, Ichinose A, *Mat. Sci. For.*, 294-2: 165-168, 1999.

261. "Buffer Layers and Thallination of Tl -based Superconductors on Flexible Metal Substrates", P. Parilla, C. Carlson, Y. Wang, R. Bhattacharya, R. Blaughter, D. Ginley, M. Paranthaman, A. Goyal, D. Christen, D. Kroeger, Proc. of the 1998 Applied Superconductivity Conference, Palm Desert, CA, *IEEE Transactions*, 9(2): 1673-1676, 1999.

262. "Long Length Fabrication of YBCO on RABiTS Using Pulsed Laser Ablation", C. Park, D. Norton, D. Christen, J. Budai, A. Goyal, D. Kroeger and M. Paranthaman, Proc. of the 1998 Applied Superconductivity Conference, Palm Desert, CA, *IEEE Transactions*, 9(2): 2276- 2279, 1999.

263. "Low Cost Combustion Vapor Deposition of Epitaxial Buffer layers and Superconductors", S. Shoup, D. Cousins, A. Hunt, S. Shanmughan, M. Paranthaman, A. Goyal, P. Martin and D. Kroeger, Proc. of the 1998 Applied Superconductivity Conference, Palm Desert, CA, *IEEE Transactions*, 9(2): 2426- 2429, 1999.

264. "Bend Strain Tolerance of Critical Currents of Y-123 Films Deposited on roll-textured (001) Ni", C. Park, D. P. Norton, J. Budai, D. Christen, D. Verebelyi, R. Feenstra, D. Lee, A. Goyal, D. Kroeger and M. Paranthaman, Proc. of the 1998 Applied Superconductivity Conference, Palm Desert, CA, *IEEE Transactions*, 9(2): 2276- 2279, 1999.

265. "Reel-to-reel Continuous Deposition of Epitaxial CeO_2 Buffer Layers on Biaxially Textured Ni Tapes by Electron Beam Evaporation," Cui, X.; List, F.A.; Kroeger, D.M.; Goyal, A.; Lee, D.F.; Mathis, J.; Specht, E.D.; Martin, P.M.; Feenstra, R.; Verebelyi, D.T.; Christen, D.K.; Paranthaman, M.; *IEEE Transactions*, 9(2): 1967-1970, 1999.

266. "Growth of Biaxially-Oriented Conductive $LaNiO_3$ Buffer-Layers on Textured Ni

Tapes for High-T_c Coated Conductors", Q. He, D. K. Christen, R. Feenstra, D. P. Norton, M. Paranthaman, E. D. Specht, A. Goyal and D. M. Kroeger, *Physica C*, 314, 105, 1998.

267.“Bend strain tolerance of critical currents for YBa₂Cu₃O_{7-δ} films deposited on rolled-textured, (001)Ni,” Park C, Norton DP, Budai JD, Christen DK, Verebelyi D, Feenstra R, Lee DF, Goyal A, Kroeger DM, Paranthaman M., *Appl. Phys. Lett.*, 73, 1904, 1998.

268.“Microstructure of Electron-Beam Evaporated Epitaxial Yttria-Stabilized Zirconia / CeO₂ Bilayers on Biaxially Textured Ni Tape,” C. Yang, S. E. Babcock, A. Goyal. M. Paranthaman, F. A. List, D. P. Norton, D. M. Kroeger and A. Ichinose, *Physica C*, 307 (1-2): 87-88, Oct. 1998.

269.“High Critical Current Density YBa₂Cu₃O₇ Tapes Using the RABiTS Approach”, A. Goyal, F. A. List, J. Mathis, M. Paranthaman, E. D. Specht, C. Park, D. F. Lee, D. M. Kroeger, D. K. Christen, D. D. Budai and P. M. Martin, *J. of Superconductivity*, 11, 481, 1998.

270.“Epitaxial HTS on RABiTS: A Route Towards the Next Generation Superconducting Wire”, A. Goyal et al., *Proc. 1998 Int. Workshop on Superconductivity*, July 12-15, Okinawa, Japan, pg. 69, 1998.

271.“Biaxially Textured YBa₂Cu₃O_{7-δ} Conductors on RABiTS with Critical Current Densities of 2-3 MA/cm²”, J. E. Mathis, A Goyal et al., *Japan. J. of Appl. Phys.*, 37, 11B, 1998.

272.“High J_c YBa₂Cu₃O_{7-δ} Films on Buffer Layers made by Sputtering, F. A. List, A. Goyal et al., *Physica C*, 302, 87-92, 1998.

273.“Laser Ablated Epitaxial LaAlO₃ Buffer Layers on Biaxially Textured Ni Substrates for Superconducting Tapes”, C. M. Carlson, J. C. Price, P. A. Parilla, D. S. Ginley, R. D. Blaughter, A. Goyal, M. Paranthaman, D. M. Kroeger and D. K. Christen, *Physica C*, 304, 82-88, 1998.

274.“Development of Coated Conductors”, J. E. Hack, A. Goyal and D. Moon, To be published in the proceedings of the *8th US-Japan Workshop on Superconductivity*, Dec. 8-10, National High Field Magnet Laboratory, Tallahassee, Florida, 1998.

275.“High-J_c, Epitaxial HTS Conductors on Rolling-assisted-biaxially-textured-substrates (RABiTS)”, A. Goyal et al., published in the *Proceedings of the 8th US-Japan Workshop on HTS*, Dec. 8-10, National High Field Magnet Laboratory, Tallahassee, Florida, 1998.

276.“Microstructural Features of RABiTS Deposited by E-beam Evaporation”, S. E. Babcock, C. Yang, A. Polyanskii, D. C. Larbalestier, A. Goyal, M. Paranthaman and D. M. Kroeger, published in the *Proceedings of the 8th US-Japan Workshop on HTS*, Dec. 8-10, National High Field Magnet Laboratory, Tallahassee, Florida, 1998.

277.“Progress on Tl-based Wire and Tape”, P. A. Parilla, C. M. Carlson, R. D. Blaughter, A. Goyal, M. Paranthaman, D. M. Kroeger and D. K. Christen, published in the *Proceedings of the 8th US-Japan Workshop on HTS*, Dec. 8-10, National High Field Magnet Laboratory, Tallahassee, Florida, 1998.

278.“Cube-textured Ni Substrates for High-temperature Superconductors”, E. D. Specht, A. Goyal, D. F. Lee, D. M. Kroeger, M. Paranthaman, R. K. Williams and D. K. Christen, *Supercond. Sci. & Tech.*, 11, 945, 1998.

279.“Biaxially textured, epitaxial LaAlO₃ thick films on Ni using a sol-gel technique”, S. S. Shoup, M. Paranthaman, A. Goyal, E. D. Specht, D. F. Lee, D. M. Kroeger and D. B. Beach, *J. Am. Ceram. Soc.*, 81(11), 301-3021, 1998.

280.“Epitaxial YBCO films on rolled-textured metals for high temperature superconducting applications”, D. P. Norton, C. Park, C. Prouteau, D. K. Christen, A. Goyal, E. Y. Sun, D. F. Lee, D. M. Kroeger, E. Specht and M. Paranthaman, *J. of Mater. Sc. & Engg. B*, 56(2-3), 86-94, 1998.

281.“Epitaxial Film Growth of Tl_{0.78} Bi_{0.22}Sr_{1.6}Ba_{0.4}Ca₂Cu₃O_{9-y} on Rolling Assisted Biaxially Textured Nickel Substrates with YSZ and CeO₂ Buffer Layers”,

Z. F. Ren, J. Y. Lao, L. P. Guo, J. H. Wang, J. D. Budai, D. K. Christen, A. Goyal, M. Paranthaman, E. D. Specht and J. R. Thompson, **J. of Superconductivity**, vol. 1, pgs 159-161, 1998.

282. "Thick Film Processing for Tl-oxide Wire and Tape", R. N. Bhattacharya, R. D. Blaugher, A. Natarajan, C. M. Carlson, P. A. Parilla, D. S. Ginley, M. Paranthaman, A. Goyal and D. M. Kroeger, **J. of Superconductivity**, vol. 11, pgs. 173-180, 1998.

283. "Exploring Spatial Resolution in Electron Back-scattered Diffraction (EBSD) Experiments via Monte Carlo Simulation", S. X. Ren, E. A. Kenik, K. B. Alexander and A. Goyal, **Ultramicroscopy**, vol. 4, pgs 15-22, 1998.

284. "Epitaxial Superconductors on Rolling Assisted Biaxially Textured Superconductors (RABiTS): A Route Towards High Critical Current Density Wire", A. Goyal et al., **Applied Superconductivity**, commemorating the 10th anniversary of HTS, vol. 4, pgs. 403-429, 1997.

285. "Conductors With Controlled Grain Boundaries: An Approach to the Next Generation, High Temperature Superconducting Wire," A. Goyal, D. P. Norton et al., **Special 10th anniversary on High Temperature Superconductors of J. of Materials Research**, vol. 12, pgs. 2924-2940, 1997.

286. "Alternating current losses in biaxially textured YBa₂Cu₃O₇-delta films deposited on Ni tapes," Kerchner HR, Norton DP, Goyal A, Budai JD, Christen DK, Kroeger DM, Specht ED, He Q, Paranthaman M, Lee DF, Sales BC, List FA, Feenstra R, **Appl. Phys. Lett.**, 71, 2029, 1997.

287. "Epitaxial YBa₂Cu₃O₇ on Biaxially Textured (001) Ni: An Approach to High Critical Current Density Superconducting Tapes", D. P. Norton, A. Goyal et al., Proc. of the **ISTEC Workshop on HTS Materials**, 1997.

288. "Critical Current, Film Thickness, and Grain Alignment For Spray-pyrolyzed Films of Tl-1223", E. D. Specht, A. Goyal, D. M. Kroeger, A. Mogro-Campero, P. J. Bednarcyzk, J. E. Tkacyzk, and J. A. Deluca, **Physica C**, 270, pgs 91-96, 1997.

289. "Growth of Biaxially Textured Buffer Layers on Rolled-Ni Substrates by Electron Beam Evaporation", M. Paranthaman, A. Goyal et al., **Physica C**, 275, 266, 1997.

290. "Low Cost, Single-crystal-like Substrates with Tailored Microstructures", A. Goyal, D. P. Norton, M. Paranthaman, F. List, E. Specht, D. M. Kroeger and D. K. Christen, Proc. of the **First Conference on Future Generation of Photovoltaic Technologies**, Denver, Colorado, March 24-28, 1997.

291. "Fabrication of High Critical Current Density Superconducting Tapes by Epitaxial Deposition of YBCO Thick Films on Biaxially Textured Metal Substrates", A. Goyal et al., published in the **Proc. of the 9th International Symposium on Superconductivity**, held Oct. 21-24, Sapporo, Hokkaido, Japan, 1996, pgs. 685-688, Springer-Verlag, Tokyo, 1997.

292. "Grain Boundary Networks and Percolative Current Flow in Polycrystalline, HTS Conductors", A. Goyal, E. D. Specht and D. M. Kroeger, published in the **Proc. of the 9th International Symposium on Superconductivity**, held Oct. 21-24, Sapporo, Hokkaido, Japan, 1996, pgs. 815-818, Springer-Verlag, Tokyo, 1997.

293. "Grain Boundary Studies of High Temperature Superconducting Materials Using Electron Backscatter Kikuchi Diffraction", A. Goyal, E. D. Specht, Z. L. Wang and D. M. Kroeger, **Ultramicroscopy**, 67, pgs. 35-57, 1997.

294. "Low-cost substrates for Photovoltaics", D. P. Norton, A. Goyal et al., Proc. of the **First Conference on Future Generation of Photovoltaic Technologies**, Denver, Colorado, March 24-28, 1997.

295. "Epitaxial Oxides on Biaxially Textured Metals", D. P. Norton, A. Goyal et al., published in the **Proceedings of the MRS Spring Meeting**, March 31 - April 3, 1997.

296. "Fabrication and Properties of High-Jc, Biaxially Aligned 123 Thick Films on metallic Tape Substrates", D. K. Christen, D. P. Norton, A. Goyal, J. D. Budai, R. Feenstra, Q. He, C. E. Klabunde, D. M. Kroeger, D. F. Lee, F. A. List, M. Paranthaman, B. Saffian, E. D. Specht and M. F. Chisholm, published in the Proceedings of the **International Workshop on Critical Currents in**

Superconductors for Practical Applications, Xi'an, China, March 6-8, 1997.

297.“Growth of $TlBa_2Ca_2Cu_3O_{9-y}$ Superconducting Films with Local Biaxial Alignment extending up to 5 mm on Ag Substrates using a Spray Pyrolysis Technique,” M. Paranthaman, F. A. List, A. Goyal, E. D. Specht, C. E. Vallet, D. M. Kroeger, and D. K. Christen, **J. Mater. Res.**, 12, p. 619, 1997.

298.“Development of Biaxially Textured Buffer Layers on Rolled-Ni Substrates for High Current YBCO Coated Conductors”, M. Paranthaman, A. Goyal et al., **Proc. of the 9th International Symposium on Superconductivity**, held Oct. 21-24, Sapporo, Hokkaido, Japan, pgs. 669-672, Springer-Verlag, Tokyo, 1997.

299.“Deposition of Biaxially-Oriented Metal and Oxide Buffer-Layer Films on Textured Tapes: New Substrates for High-Current, High-Temperature Superconductors, Q. He, D. K. Christen, J. D. Budai, E. D. Specht, D. F. Lee, A. Goyal, D. P. Norton, M. Paranthaman, F. A. List and D. M. Kroeger, **Physica C**, 275, 155, 1997.

300.“Reconstruction of Critical Current Flow Patterns and Imaging of Current-Limiting Defects in Polycrystalline High Temperature Superconducting Films”, A. E. Pashitski, A. A. Polyanskii, A. Gurevich, D. C. Larbalestier, A. Goyal, E. D. Specht, D. M. Kroeger and E. Tkaczyk and J. A. DeLuca, **Science**, 275, p. 367-369, 1997.

301.“Processing and Long-Range Critical Current Transport in High Temperature Superconductors”, D. M. Kroeger, D. F. Lee, A. Goyal and E. D. Specht, in **Synthesis and Properties of Advanced Materials**, Kluwer Academic Publications, 1997, pp. 117-148.

302.“High Critical Current Density Superconducting Tapes By Epitaxial Deposition of YBCO Thick Films on Biaxially Textured Metals”, A. Goyal, D. P. Norton, J. D. Budai, M. Paranthaman, E. D. Specht, D. M. Kroeger, D. K. Christen, Q. He, B. Saffian, F. A. List, D. F. Lee, P. M. Martin, C. E. Klabunde, E. Hatfield and V. K. Sikka, **Appl. Phys. Lett.**, vol. 69, No. 12, Sept. 16, 1996.

303.“Percolative Current Flow in High- J_C , Polycrystalline High Temperature Superconductors”, A. Goyal, E. D. Specht, D. K. Christen, D. M. Kroeger, A. Pashitski, A. Polyanskii and D. C. Larbalestier, **J. of Metals, Minerals and Materials (JOM)**, vol. 48, No. 10, p.24-29, 1996.

304.“Epitaxial YBCO on Biaxially Textured Nickel (001): An Approach to Superconducting Tapes with high Critical Current Density”, D. P. Norton, A. Goyal, J. D. Budai, D. K. Christen, D. M. Kroeger, E. D. Specht, Q. He, B. Saffian, M. Paranthaman, C. Klabunde, D. F. Lee, B. C. Sales and F. A. List, **Science**, 274, 755-757, 1996.

305.“Texture Development in Metals and Intermetallics”, A. Goyal, B. Kad and P. Desai, **Invited Overview Report for DARPA**, 1996.

306.“Local Texture, Current Flow, and Superconductive Transport Properties of $Tl1223$ Deposits on Practical Substrates”, D. K. Christen, E. D. Specht, A. Goyal, Q. He, M. Paranthaman, C. E. Klabunde, R. Feenstra, F. A. List, D. M. Kroeger and J. E. Tkaczyk, J. A. Deluca, Z. F. Ren, C. A. Wang and J. H. Wang, **Proceedings of the 10th Anniversary HTS Workshop on Physics**, Materials and Applications, Houston, TX, March 12-16, 1996.

307.“Biaxially Textured Metallic Substrates for High Temperature Superconductors”, D. K. Christen, D. P. Norton, A. Goyal, J. D. Budai, Q. He, C. Klabunde, D. M. Kroeger, M. Paranthaman, B. Saffian and E. D. Specht, **Czechoslovak Journal of Physics**, 46, 1531 (1996).

308.“Transport Properties of $Tl-1223$ Deposits for Possible Conductor Applications”, D. K. Christen, Q. He, M. Paranthaman, C. E. Klabunde, R. Feenstra, A. Goyal, F. A. List, E. D. Specht, and D. M. Kroeger, p. 116 in the proceedings of the **Seventh US-Japan Workshop on HTS Materials**, Tsukuba, Japan, October 24-25, 1996.

309.“High- J_C $Tl-1223$ Thick films on Polycrystalline Ag by Spin Coating”, Q. He, D. K. Christen, C. Klabunde, J. E. Tkaczyk, K. W. Lay, M. Paranthaman, J. R. Thompson, A. Goyal, A. J. Perdaza and D. M. Kroeger, **Applied Physics Letters**, 67, 294, 1995.

310.“Percolative Current Paths in High- J_C Bi-2223 Powder-in-tube Tapes”, A. Goyal, E.

D. Specht, D. M. Kroeger, T. A. Mason, D. J. Dingley, G. N. Riley Jr. and M. W. Rupich, Appl. Phys. Lett., 66 (1995) 1.

311. "Effect of Texture on Grain Boundary Misorientation Distributions in Polycrystalline High Temperature Superconductors", A. Goyal, E. D. Specht, D. M. Kroeger, and T. A. Mason, Appl. Phys. Lett., 68 (1995) 711.

312. "Crystallization of "Colonies" of Locally Aligned Grains During Thallination of Spray-Pyrolyzed Tl-1223", A. Goyal, E. D. Specht and D. M. Kroeger, Appl. Phys. Lett., 67 (1995) 1.

313. "Fabrication, Processing and Superconducting Properties of Tl-1223 Powder-in-tube Conductors" A. Goyal, M. Paranthaman and D. M. Kroeger, IEEE Transactions in Applied Superconductivity, vol. 5, pg. 1405, 1995.

314. "Studies on Superplastically Deformed 123/Ag Composites" , A. Goyal, Z. L. Wang, D. M. Kroeger and Y. T. Chou, IEEE Transactions in Applied Superconductivity, vol. 5, pg. 1452, 1995.

315. "Formation of Colonies of Locally Aligned grains During Thallination of Spray-pyrolyzed $\text{Ba}_2\text{Ca}_2\text{Cu}_3\text{O}_x$ Thick Films" A. Goyal, E. D. Specht and D. M. Kroeger, IEEE Transactions in Applied Superconductivity, vol. 5, pg 1950, 1995.

316. "Formation of Anisotropic Tl-1223, 2223 and 2212 particles using Aerosol Flow Reacted Particles" M. Paranthaman, A. Goyal and D. M. Kroeger, IEEE Transactions in Applied Superconductivity, vol. 5, pg 1490, 1995.

317. "Microtexture and Mesotexture in High- J_c Bi-2223", A. Goyal, E. D. Specht, D. M. Kroeger, T. A. Mason, D. J. Dingley and G. N. Riley, J. of Electronic Materials, 24 (1995) 1865."Effect of the Colony Microstructure on the Transport Critical Current Density of high- J_c Tl-1223 Thick Films", Proceedings of the 1995 International Workshop on Superconductivity co-sponsored by ISTEC and MRS, June 18-21, 1995, Maui, USA, pg. 453.

318. "Paths for Current Flow in Polycrystalline High Temperature Superconductors, D. M. Kroeger, A. Goyal and E. D. Specht, Proceedings of the 1995 International Workshop on Superconductivity co-sponsored by ISTEC and MRS, June 18-21, 1995, Maui, USA, pg 217.

319. "Superconducting Transport Properties of Tl-1223 Deposits on Polycrystalline Substrates", D. K. Christen, Q. He, M. Paranthaman, C. E. Klabunde, R. Feenstra, A. Goyal, F. A. List, D. M. Kroeger, J. E. Tkacyzk, J. A. Deluca, Z. F. Ren, C. A. Wang and J. H. Wang, Proceedings of the 1995 International Workshop on Superconductivity co-sponsored by ISTEC and MRS, June 18-21, 1995, Maui, USA, pg 383.

320. "Texture and Transport in Spray-pyrolyzed Tl-1223 thick Films, J. E. Tkacyzk, J. A. Sutliff, J. A. Deluca, P. J. Bednarcyzk, C. L. Briant, Z. L. Wang, A. Goyal and D. M. Kroeger, D. H. Lowndes and E. D. Specht, J. Mater. Res., 10 (1995) 1.

321. "The Effect of Colonies of Aligned Grains on Critical Current in High temperature Superconductors", E. D. Specht, A. Goyal and D. M. Kroeger, J. A. Deluca, J. E. Tkacyzk, C. L. Briant and J. A. Sutliff, Physica C, 242 (1995) 164.

322. "Strong and Weak Link Behavior of Single Grain Boundaries in Melt Textured Bulk Ag Doped $\text{YBa}_2\text{Cu}_3\text{O}_x$ ", C. Sarma, G. Schindler, C. C. Koch, A. I. Kingon and A. Goyal, Physica C, 244 (1995) 287.

323. "Microstructural Evolution of a Silver Containing Spray-Pyrolyzed 1223 Tl-Ca-Ba-Cu-Oxide Superconductor, C. L. Briant, J. A. Deluca, P. L. Karas, M. F. Garbauskas, J. A. Sutliff, A. Goyal and D. M. Kroeger, J. Mater. Res., 10 (1995) 823.

324. "2D and 3D Percolation in High-Temperature Superconductors", E. D. Specht, A. Goyal and D. M. Kroeger, Phys. Rev. B, 53, pgs. 3585-3589, 1995.

325. "Microdiffraction Measurements of the Effects of Grain Alignment on Critical Current in High Temperature Superconductors", NSLS Annual Report, E. D. Specht and A. Goyal, 1995.

326. "Progress Towards Bulk Application of High-Tc Superconductors", A. Goyal, J. of Minerals, Metals and Materials, Pg. 55, August, 1995.

327. "Dependence of Critical Current Density on Microstructure in High Temperature Superconductors", A. Goyal, D. M. Kroeger, E. D. Specht and Z. L. Wang, **J. of Electronic Materials**, 23 (1994) 1191.

328. "A New Process to Texture Y123", V. Selvamanickam, A. Goyal and D. M. Kroeger, **J. of Electronic Materials**, 23 (1994) 1169.

329. "A New Process to Texture YBa₂Cu₃O_{7-x} Superconductor", V. Selvamanickam, A. Goyal and D. M. Kroeger, Published as proceedings of 1994 Applied Superconductivity Conference, Oct 16-21, 1994, Boston, MA, in **IEEE Transactions**.

330. "Local Texture and Grain Boundary Misorientations in High J_c Oxide Superconductors, D. M. Kroeger, A. Goyal, E. D. Specht, J. E. Tkaczyk, J. Sutliff, J. A. Deluca, G. N. Riley Jr., and L. Masur, **J. of Superconductivity**, 1995.

331. "Processing/Microstructure Control for High Strength, Ductility, and Toughness at Room Temperature in P/M FeAl", P. J. Maziasz, V. Sikka, D. J. Alexander, A. Goyal and J. W. Wright, published in the **Proceedings of the 1996 Spring TMS Meeting**, Anaheim, CA, Feb 2-6, 1996.

332. "Local Texture and Percolative Paths for Long-Range Current Conduction in High Critical Current Density TlBa₂Ca₂Cu₃O_{8+x} Deposits", D. M. Kroeger, A. Goyal, E. D. Specht, Z. L. Wang, J. E. Tkaczyk, J. A. Sutliff and J. A. Deluca, **Appl. Phys. Lett.**, 64 (1994) 106-108.

333. "Evidence for local texture in Spray-Pyrolyzed Tl-1223 Thick Films", E. D. Specht, A. Goyal, D. M. Kroeger, C. L. Briant, J. A. Deluca, J. A. Sutliff and J. E. Thaczyk, **Physica C**, 226 (1994) 76-84.

334. "Effect of Thermal Annealing on Grain Boundary Chemistry of Polycrystalline TlBa₂Ca₂Cu₃O_{8+x} Films", Z. L. Wang, C. L. Briant, J. Deluca, A. Goyal, D. M. Kroeger, J. A. Sutliff, E. D. Specht and J. E. Thaczyk, published in the **Proceedings of the Microscopy Society of America**, July 31-Aug 5, 1994, New Orleans, LA.

335. "The Path for Long Range Conduction in High J_c TlBa₂Ca₂Cu₃O_{8+x} Deposits", D. M. Kroeger, A. Goyal, E. D. Specht, Z. L. Wang, J. E. Thaczyk, J. A. Sutliff and J. A. Deluca, **Proceedings of the 1993 TMS Fall Meeting**, Oct. 17-21, Pittsburgh, PA, edited by U. Balachandran, E. W. Collings and A. Goyal.

336. "Progress in the Development of the Silver Addition Process for Preparing Textured "1223" Tl-Ca-Ba-Cu-O Thick Films", J. A. Deluca, P. L. Karas, C. L. Briant, J. E. Thaczyk and A. Goyal, **Proceedings of the 1993 TMS Fall Meeting**, Oct. 17-21, Pittsburgh, PA, edited by U. Balachandran, E. W. Collings and A. Goyal.

337. "Long Range Conduction in High J_c TlBa₂Ca₂Cu₃O_{8+x} Deposits", D. M. Kroeger, A. Goyal, E. D. Specht, Z. L. Wang, J. E. Thaczyk, J. A. Sutliff and J. A. Deluca, **Proceedings of the 1993 TcSUH Meeting**, Dec. 5-6, Houston, TX.

338. "A New Process to Texture YBa₂Cu₃O_{7-x} Superconductor", V. Selvamanickam, A. Goyal and D. M. Kroeger, **Appl. Phys. Lett.**, 65 (1994) 639.

339. "Advances in Processing of High-T_c Superconductors for Bulk Applications", A. Goyal, **J. of Minerals, Metals and Materials**, pg. 14-20, December, 1994.

340. "Models for Long-range Current Flow in Bulk Oxide Superconductors", A. Goyal and D. M. Kroeger, **J. of Minerals, Metals and Materials**, pg. 11, December, 1994.

341. "Microstructures and Flux-pinning in Melt-processed 123", Z. L. Wang, A. Goyal, R. Kontra and D. M. Kroeger, **Materials Science Forum**, 129 (1993) 1-16.

342. "Interface and Grain Boundary Chemical Structures in YBaCuO materials", Z. L. Wang, R. Kontra, A. Goyal, D. M. Kroeger and R. K. Williams, Special Issue of "Interface Science" on **Interfaces in High-Temperature Superconductors**, edited by S. E. Babcock and K. L. Merkle, vol 1, 321-338, 1994.

343. "Microdiffraction Measurements of Correlation's in Grain Orientation in High Current, High temperature Superconductors", E. D. Specht, A. Goyal, D. M. Kroeger, Z. L. Wang, J. E. Tkaczyk and J. A. Deluca, **NSLS Annual Report**, 1993.

344. "Flux-creep studies in YBa₂Cu₃O_{7-δ}," Y. R. Sun, J. R. Thompson, D. K. Christen, Y. J. Chen, J. G. Ossandon, F. Holtzberg, A. D. Marwick and A. Goyal, High Temp. Supercond., **Proc. 3rd Beijing Int. Conf.**, eds: Z. Gan, S. S. Xie and Z. X. Zhao,

p609, 1993.

345. "Critical Currents and Microstructures in Oxide Superconductors," D. M. Kroeger and A. Goyal, *J. of Metals*, p. 42-46, Oct. 1992.

346. "Stacking Faults Associated with 211 Particles and other Likely Pinning Centers in Melt-processed $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$," A. Goyal, Z. L. Wang, K. B. Alexander and D. M. Kroeger, Published in the Proceedings of the International Workshop on Superconductivity, June 23-26, 1992, Honolulu, Hawaii, U. S. A.

347. "Microstructure and Growth of Melt-textured $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$," K. B. Alexander, A. Goyal, D. M. Kroeger, S. Selvamanikam, *Physical Review B*, 45 (1992) 5622.

348. "Fabrication of Highly Aligned $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$ -Ag Composites," A. Goyal, P. D. Funkenbusch, D. M. Kroeger, and S. J. Burns, *Physica C*, 182 (1992) 203.

349. "Hardness and Fracture Toughness of Highly Aligned $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$," A. Goyal, P. D. Funkenbusch, D. M. Kroeger, and S. J. Burns, *J. of Applied Physics*, 71 (1992) 2363.

350. "Mechanical Properties of Highly Aligned $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$: Effect of Y_2BaCuO_5 Particles," A. Goyal, P. D. Funkenbusch, D. M. Kroeger, and S. J. Burns, *Physica C*, 183 (1992) 221.

351. "Solidification of $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$ From the Melt" A. Goyal, K. B. Alexander, D. M. Kroeger, P. D. Funkenbusch, and S. J. Burns, *Physica C*, 210 (1993) 197.

352. "Structural and Chemical Disorder near the 211/123 Interface and its possible relation to the Flux-pinning behavior in Melt-textured $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$," Z. L. Wang, A. Goyal, and D. M. Kroeger, *Physical Review B*, 47 (1992) 5373.

353. "Substrate Reactions and Flux-pinning Structures in Melt-processed $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$ Deposits on Ag-Pd Substrates", D. M. Kroeger, A. Goyal, Z. L. Wang, and F. A. List, Published in the Proceedings of the 1992 T_c SUH Workshop on HTS Materials, February 27-28, Houston, Texas.

354. "Effects of Field Sweep Rate on the Magnetization in High- T_c Superconductor Materials", Yang Ren Sun, J. R. Thompson, D. K. Christen, J. G. Ossandon, Y. J. Chen and A. Goyal, *Physical Review B*, 46 (1992) 8480.

355. "Strong Evidence for Vortex Glass/Collective Pinning Theory in $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$," Yang Ren Sun, J. R. Thompson, Y. J. Chen, D. K. Christen, and A. Goyal, *Physical Review B*, 47 (1993) 14481.

356. "Defects near the $\text{Y}_2\text{BaCuO}_x/\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$ Interface and its effect on Flux-pinning in Melt-processed and Quench-Melt-Growth Processed $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$," Z. L. Wang, A. Goyal, D. M. Kroeger and T. M. Armstrong, Published in the Proceedings of the 1992 Spring MRS Meeting, San Francisco, CA.

357. "Flux-pinning Structures in Melt-processed $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$ ", D. M. Kroeger, Z. L. Wang and A. Goyal, Published in the Proceedings of the 5th US/Japan Workshop on High- T_c Superconductors, Tokyo, Japan, Nov 9-10, 1992.

358. "The Production and Properties of Melt-Zone Textured $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$ Filaments", D.K. Christen, C. E. Klabunde, M. J. Neal, M. V. Parish, D. B. Chandler, B. C. Chakoumakos, A. Goyal and D. M. Kroeger, Published in the Proceedings of the International Workshop on Superconductivity, June 23-26, 1992, Honolulu, Hawaii, U. S. A.

359. "Interface Microstructures in Melt-textured 123 on Ag-Pd and Flux-pinning centers introduced by 211 particles," Z. L. Wang, A. Goyal and D. M. Kroeger, proceedings of the 50th Annual Meeting of the Electron Microscopy Society of America, held in Boston, MA, August, 1992.

360. "Effect of Ag/ Ag_2O Additions on the Resistive Behavior of Polycrystalline $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$ in the Low Temperature Sintering Regime," A. Goyal, S. J. Burns, and P. D. Funkenbusch, *Physica C*, 168 (1990), 405.

361. "Crystallographic Thermal Expansion Coefficient and Elasticity Across the Superconducting Transition in $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$," S. J. Burns, A. Goyal, and P. D. Funkenbusch, *Physical Review B*, 39 (1989) 11457.

362. "Discontinuity of the Isothermal Elastic Compliances Across the Superconducting Transition in $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$," A. Goyal, S. J. Burns, S. Gracewski, and P. D.

	<p>Funkenbusch, <u>Physica C</u>, 159 (1989) 313.</p> <p>363. "The Effect of Ag/Ag₂O Doping on the Low Temperature Sintering of Superconducting Composites," A. Goyal, S. J. Burns, and P. D. Funkenbusch, <u>Superconductivity and its Applications</u>, edited by H. S. Kwok and D. T. Shaw, Elsevier Science, 1989.</p> <p>364. "Young's Modulus Measurement of Polycrystalline YBa₂Cu₃O_{7-δ}," G. C. S. Chang, S. J. Burns, A. Goyal, and P. D. Funkenbusch, <u>Ceramic Superconductors II</u>, edited by Man F. Yan, American Ceramic Society, 1988, pp 580.</p> <p>365. "Superconducting Cermets," A. Goyal, P. D. Funkenbusch, and S. J. Burns, <u>Superconductivity and its Applications</u>, edited by H. S. Kwok and D. T. Shaw, Elsevier Science, 1988.</p> <p>366. "Isostructural Phase Transition in YBa₂Cu₃O_{7-δ} with the Onset of Superconductivity," S. J. Burns, A. Goyal, and P. D. Funkenbusch, <u>Scripta Metallurgica</u>, 22 (1988) 1129.</p> <p>367. "Critical Point Phase Transformations Applied to Ceramic Superconductors," S. J. Burns, A. Goyal, and P. D. Funkenbusch, <u>Superconductivity and its Applications</u>, edited by H. S. Kwok and D. T. Shaw, Elsevier Science, 1988.</p> <p>368. "Cermets of the Phase Superconductor," A. Goyal, P. D. Funkenbusch, G. C. S. Chang, and S. J. Burns, <u>Materials Letters</u>, 6 (1988) 257.</p>
--	---

List of Invited Publications	
	<ol style="list-style-type: none"> 1. Invited Overview Chapter in Handbook of Superconducting Materials, titled "HTS conductor processing techniques", 2017. 2. Invited Overview Chapter in second edition of handbook titled "Nanotechnologies to enable high-performance superconductors for energy applications", published by Wiley-VCH, 2013, edited by J. Garcia, Spain. 3. Invited Book Chapter for book titled "Interfaces in Electronic Materials" published by Francis Dodds of Woodhead Publishing, 2011. 4. Invited Overview Chapter in handbook titled "Nanotechnology for the Energy Challenge", published by Wiley-VCH, 2009, edited by J. Garcia, Spain. 5. Invited Overview Chapter in book titled "Thin Film Metal-Oxides: Fundamentals and Applications in Electronics and Energy" published by Springer, 2009, edited by S. Ramanathan, Harvard University. 6. Invited Overview Chapter in book titled "CSD of Functional Oxide Thin Films", To be published by Wiley-VCH, 2009, edited by T. Schneller, R. Waser and D. Payne. 7. Invited Paper, titled "Multifunctional, phase-separated, BaTiO₃+CoFe₂O₄ cap buffer layers for improved flux-pinning in YBa₂Cu₃O_{7-δ} based coated conductors," to be published in special issue of Superconductor Science & Technology, 2009. 8. Invited Paper, titled "Enhanced and Uniform in-Field Performance in Long (Gd,Y)-Ba-Cu-O Tapes with Zirconium Doping Fabricated by Metal Organic Chemical Vapor Deposition," to be published in special issue of Superconductor Science & Technology, 2009. 9. Invited Paper, titled "Effects on J_c of Pining Center Morphology for Multiple-in-Line-Damage in Coated Conductor and Bulk, Melt-Textured HTS," to be published in special issue of Physica C, 2009. 10. Invited Paper, titled "Magnetic field orientation dependence of flux pinning in (Gd,Y)Ba₂Cu₃O_{7-x} coated conductor with tilted lattice and nanostructures," to be published in special issue of Physica C, 2009. 11. Invited paper, titled "Enhanced flux pinning in MOCVD-YBCO films through Zr-additions: Systematic feasibility studies," to be published in special issue of Physica C, 2009. 12. Invited Overview Chapter in Encyclopedia of Materials: Science and Technology (EMSAT) on the RABiTS technology. 2007 Elsevier Ltd. All rights reserved.

	<p>Editors: K. H. Jürgen Buschow, Robert W. Cahn, Merton C. Flemings, Bernard Ilschner (print), Edward J. Kramer, Subhash Mahajan, and Patrick Veyssiére (updates), ISBN: 978-0-08-043152-9, pgs. 1-5.</p> <p>13. Invited Overview Chapter in Book titled "Flux Pinning and AC loss Studies on YBCO Coated Conductors" edited by M. Parans Paranthaman and Venkat Selvamanickam, published by Nova Science Publishers.</p> <p>14. Invited paper, published in the proceedings of the 1st International Congress on Ceramics, held in Toronto, Canada, June, 2006.</p> <p>15. Invited Overview Chapter in Book titled "Second generation HTS Conductors" edited by A. Goyal, Published by Kluwer Academic Publishers, NY, October, 2005.</p> <p>16. Invited Overview Paper, published in the Proc. Of the ISS'2004 in Physica C, 2005.</p> <p>17. Invited Overview Paper, Published in the MRS Bulletin, August, 2004.</p> <p>18. Invited Overview Chapter in Book "High Temperature Superconductivity I: Materials," edited by A.V. Narlikar, pp. 377-398, 2004, published by Springer, NY.</p> <p>19. Invited Overview Chapter in Book "Recent Research Developments in Applied Chemistry," A new series in Applied Chemistry by Transworld Research Network, containing review articles, to be published 2004.</p> <p>20. Invited Overview Chapter in Book on "Electron Backscatter Diffraction in Materials Science," pp. 319-337, 2000, Published by Kluwer Academic/ Plenum Publishers, New York, edited by A. J. Schwartz, M. Kumar and B. L. Adams.</p> <p>21. Invited Overview Paper, published in the Proc. of ISS'2000, Tokyo, published by ISTE, Japan.</p> <p>22. Invited Overview Paper, published in the Proc. of the IWCC'2000, Fukuoka, Japan, Oct. 2000.</p> <p>23. Invited Overview Paper, J. of Minerals, Metals and Materials Special Issue on 21st Century Technologies, July 1999.</p> <p>24. Invited Overview Paper for a special issue of the Journal MICRON titled "Advanced Microscopy Studies of High temperature Superconductors", Vol. 30, No. 5, pgs. 463-478, Oct. 1999.</p> <p>25. Invited Overview Paper titled "High Critical Current Density $\text{YBa}_2\text{Cu}_3\text{O}_7$ Tapes Using the RABiTS Approach", J. of Superconductivity, 11, 481, 1998.</p> <p>26. Invited Overview Paper for a Handbook of Superconducting Materials, Institute of Physics, 1999.</p> <p>27. Invited Overview Paper on RABiTS in a special issue of Applied Superconductivity, titled, Long Length Conductor Development for Large-scale Applications", paper titled "Epitaxial Superconductors on RABiTS: A Route Towards High Critical Current Density HTS Wire", vol. 4, pg. 403-428, 1997.</p> <p>28. Invited Overview Paper for a special issue of the Journal of Materials Research for the 10th Anniversary of HTS Materials, paper titled "Conductors with Controlled Grain Boundaries: An Approach to the Next Generation, High Temperature Superconducting Wire", vol. 12, pg. 2924-2940, 1997.</p> <p>29. Invited Plenary Lecture Overview Paper for Proceedings of the 10th Frontiers in Electron Microscopy Conference, Chicago, Illinois. Published in Ultramicroscopy, 1997.</p> <p>30. Invited Overview Chapter on Texture Development in Book Titled "Preferred Orientation Development and Property Anisotropy from High Temperature Forming Operations Metals and Intermetallics", 1997.</p> <p>31. Invited Paper, Proceedings of the 1998 US-Japan Workshop held in Okinawa, Japan, July 13-16, 1998.</p> <p>32. Invited Paper, Proceedings of the 1998 TMS Meeting, To be published in the J. of</p>
--	---

	<p>Superconductivity, 1998.</p> <p>33. Invited Paper, Proceedings of the 8th US-Japan Workshop, Dec. 7-10, Tallahassee, Fl, 1997.</p> <p>34. Invited Chapter in Book titled “Synthesis and Properties of Advanced Materials”, with D. M. Kroeger, D. F. Lee and E. D. Specht, Kluwer Academic Publishers, pgs. 117-148, 1997.</p> <p>35. Invited Paper, EMSA’97 on Grain Boundary Studies of HTS materials, Proceedings of the EMSA meeting, 1997.</p> <p>36. Invited Overview Paper on Grain Boundaries in HTS Materials, Journal of Metals, Minerals and Materials, 1996.</p> <p>37. Invited Research Paper, Symposium on High Temperature Superconductors, 1996 Spring TMS Meeting, and Anaheim, CA.</p> <p>38. Invited Research Paper, Symposium on High Temperature Superconductors, 1995 Spring TMS Meeting (Feb 28th - Mar 3rd), Las Vegas, NV; Published in the J. of Electronic Materials, titled “Mesotexture and Microtexture in Bi-2223 Powder-in-tube Conductors”.</p> <p>39. Invited Research Commentary, J. of Minerals, Metals and Materials Special Issue on Superconductors, titled “Progress Towards Bulk applications of High-T_c Superconductors”, JOM, Aug. 1995.</p> <p>40. Invited Research Paper, Symposium on High Temperature Superconductors, 1994 Spring TMS Meeting (Feb 28th - Mar 3rd), San Francisco, CA; published in the J. of Electronic Materials, titled “Dependence of Critical Current Density on Microstructure and Processing of High-T_c Superconductors”.</p> <p>41. Invited Research Commentary, J. of Minerals, Metals and Materials Special Issue on Superconductors, titled “Advances in Processing of High-T_c Superconductors for Bulk Applications”, JOM, Dec. 1994.</p> <p>42. Invited Review Article with D. M. Kroeger, “Models for Long Range Current Flow in Bulk Oxide Superconductors”, J. of Minerals, Metals and Materials, Dec. 1994, pg. 14.</p> <p>43. Invited Research Paper with D. M. Kroeger, E. D. Specht, J. E. Tkaczyk, J. Sutliff, J. A. Deluca, G. N. Riley, Jr., L. Masur, “Local Texture and Grain Boundary Misorientations in High-J_c Oxide Superconductors”, Published in J. of Superconductivity, Dec. 1994.</p> <p>44. Invited Research Paper with D. M. Kroeger, E. D. Specht, J. E. Tkaczyk, J. Sutliff, J. A. Deluca, G. N. Riley, Jr., L. Masur, “Local Texture and Grain Boundary Misorientations in High-J_c Oxide Superconductors”, Published in J. of Superconductivity, Dec. 1994.</p> <p>45. Invited Chapter in Book titled “Interface and Grain Boundary Chemical Structures in YBaCuO materials”, with Z. L. Wang, R. Kontra, D. M. Kroeger and R. K. Williams, 1994.</p> <p>46. Invited Review Article - with Z. L. Wang, R. Kontra and D. M. Kroeger, “Microstructures and Flux-pinning in Melt-processed 123”, Materials Science Forum, 1993.</p> <p>47. Invited Review Article with D. M. Kroeger, “Critical Currents and Microstructure in Oxide Superconductors”, J. of Minerals, Metals and Materials, Oct. 1992.</p>
--	---

Books- Summary	<ul style="list-style-type: none"> • <u>Second Generation High-Temperature Superconducting Wires</u>, edited by A. Goyal, under contract by Kluwer Academic Publishers. (published Oct. 2005) • <u>Epitaxial Growth of Functional Oxides</u>, edited by A. Goyal and W. Wong-Ng, under contract by Kluwer Academic Publishers. (published Spring, 2005) • <u>Processing of Bulk, High-Temperature Superconducting Wires</u>, by A. Goyal, under contract by Plenum Publishing Corporation. (published Spring 2005) • <u>Processing of High Temperature Ceramic Superconductors</u>, edited by R. L. Meng, A. Goyal, W. Wong, M. Matsumoto and H. Freyhardt, published by the American Ceramic Society, 2004. • <u>Processing of High Temperature Ceramic Superconductors</u>, edited by A. Goyal, W. Wong, M. Murakami and J. Driscoll, published by the American Ceramic Society, 2003. • <u>Processing of Long Lengths of Superconductors</u>, edited by U. Balachandran, E. W. Collings and A. Goyal, TMS, Warrendale, PA, 1994.
Publications- Summary	<ul style="list-style-type: none"> • <u>45 invited book chapters and publications</u>. • <u>Over 360 publications in national and international journals and conference proceedings</u> in a wide selection of journals including Science, Nature Communications, Nature Magazine's Scientific Reports, Philosophical Magazine, Applied Physics Letters, Energy & Environmental Science, Physical Review B, Physics Review Letters, Physica C, Superconductor Science & Technology, Applied Superconductivity, Journal of Materials Research, Journal of Applied Physics, Science and Journal of Minerals, Metals & Materials, Cryogenics, Ultramicroscopy, Journal of American Ceramic Society, IEEE Transactions in Applied Superconductivity, Japanese Journal of Applied Physics, MRS Bulletin, Scripta Metallurgica, Materials Letters, Journal of Electronic Materials, Chemistry of Materials, Journal of Materials Science & Engineering, Materials Science Forum, Journal of Superconductivity and Nanomaterials. • <u>Over 8000 citations from first author and second author publications alone</u>. • <u>Total number of citations = over 19,836. (Google Scholar)</u>. • <u>H-index = 69 (Google Scholar)</u>. • <u>i10 = 349 (Google Scholar)</u>. • In an independent analysis of the field of high-temperature superconductors conducted by Thompson-Reuters's Essential Science Indicators (ESI) and ScienceWatch.com, which tracks global trends and performance in research, <u>ranked Dr. Amit Goyal No. 1 worldwide in the total number of citations during the last decade (1999-2009)</u>. He also ranks no. 4 worldwide in the total number of papers published in same timeframe (this is still the highest number of papers by anyone outside of Japan). A recent interview with Amit is posted on ScienceWatch (http://archive.sciencewatch.com/ana/st/hts/09maySTHTSGoya1/). The analysis, conducted by ScienceWatch.com ranked authors, institutions, and countries worldwide by no. of citations, no. of papers, and average citations per paper.

Published or issued Patents - Summary	<ul style="list-style-type: none"> • Over 150 patent applications and/or invention disclosures filed. • 88 issued patents (70 US and 18 International patents). • 70 US patents issued to date: US Patent Nos. 5, 739, 086; 5, 741, 377; 5, 846, 912; 5, 898, 020; 5, 964, 966; 5, 958, 599; 5, 968, 877; 6, 077, 344; 6, 106, 615; 6, 114, 287; 6, 150, 034; 6, 156, 376; 6, 151, 610; 6, 159, 610; 6, 180, 570; 6, 235, 402; 6, 261, 704; 6, 270, 908; 6, 331, 199; 6, 375, 768; 6, 399, 154; 6, 451, 450; 6, 447, 714; 6, 440, 211; 6, 468, 591, 6, 486, 100; 6, 599, 346; 6, 602, 313, 6, 607, 313; 6, 607, 838; 6, 607, 839; 6, 610, 413; 6, 610, 414; 6, 635, 097; 6, 645, 313; 6, 663, 976; 6, 670, 308; 6, 675, 229; 6, 716, 795; 6, 740, 421; 6, 764, 770; 6, 784, 139; 6, 790, 253; 6, 797, 030; 6, 846, 344; 6, 782, 988; 6, 890, 369; 6, 902, 600; 7, 087, 113; 7, 258, 928; 7, 510, 997; 7, 683, 010; 7, 879, 161; 7, 906, 229; 7, 919, 435; 8, 034, 745; 8, 119, 571; 8, 178, 221; 8, 210, 420; 8, 227, 082; 8, 424, 745; 8, 481, 460; 8, 518, 526; 8, 536, 098; 8, 685, 549; 8, 748, 349; 8, 748, 350; 8, 795, 854; 8, 987, 736, 8, 993, 092. • 18 international patents issued to date: Australian Patent No. 8349510, Australian Patent No. 713982, Canadian Patent No. 2,217,822, Japanese Patent No. 03601830, European Region Patent No. EP 0830218, South Korea Patent No. 418279, Switzerland Patent No. 0830218, Germany Patent No. 0830218, Spain Patent No. 0830218, France Patent No. 0830218, Great Britain Patent No. 0830218, Italy Patent No. 0830218, Sweden Patent No. 0830218, Hong Kong Patent HK 1150093, Chinese Patent CN101981699, Chinese Patent CN1132585 and Indian Patent 310761. • <i>A majority of these issued patents have been licensed during the course of the last two decades.</i> • <i>Over 5 US patents presently pending.</i> • <i>Over 5 International patents pending.</i> • This is the <i>highest</i> number of issued US patents for any employee in the Battelle system (http://www.battelle.org/careers/battelle/about.stm). Battelle serves the U.S. Department of Energy in the management of four leading-edge national laboratories – Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), Brookhaven National Laboratory (BNL) and National Renewable Energy Laboratory (NREL).
--	--

List of Published Patents / Invention disclosures	<ol style="list-style-type: none"> 1. A. Goyal, J. D. Budai, D. M. Kroeger, D. P. Norton, E. D. Specht and D. K. Christen, “Structures Having Enhanced Biaxial Texture and Method to Fabricating Same - I”. <u>US Patent No. 5, 739, 086</u>, April 14, 1998. 2. A. Goyal, J. D. Budai, D. M. Kroeger, D. P. Norton, E. D. Specht and D. K. Christen, “Structures Having Enhanced Biaxial Texture and Method to Fabricating Same - II”. <u>US Patent No. 5, 741, 377</u>, April 21, 1998. 3. V. Selvamanikam, A. Goyal and D. M. Kroeger, “Method of Preparing Y-123 by Melt Processing”, <u>US Patent No. 5, 846, 912</u>, December 8, 1998. 4. A. Goyal, J. D. Budai, D. M. Kroeger, D. P. Norton, E. D. Specht and D. K. Christen, “Structures Having Enhanced Biaxial Texture and Method to Fabricating Same - III”. <u>US Patent No. 5, 898, 020</u>, April 27, 1999. 5. A. Goyal, J. D. Budai, D. M. Kroeger, D. P. Norton, E. D. Specht and D. K. Christen, “Structures Having Enhanced Biaxial Texture and Method to Fabricating Same - IV”. <u>US Patent No. 5, 958, 599</u>, September 28, 1999. 6. A. Goyal, J. D. Budai, D. M. Kroeger, D. P. Norton, E. D. Specht and D. K. Christen, “Structures Having Enhanced Biaxial Texture and Method to Fabricating Same”. <u>Australian Patent No. 713892</u>. 7. A. Goyal, J. D. Budai, D. M. Kroeger, D. P. Norton, E. D. Specht and D. K. Christen, “Structures Having Enhanced Biaxial Texture and Method to Fabricating Same”.
--	--

	<p><u>European Umbrella Patent No. EP 0830218.</u></p> <p>8. A. Goyal, J. D. Budai, D. M. Kroeger, D. P. Norton, E. D. Specht and D. K. Christen, "Structures Having Enhanced Biaxial Texture and Method to Fabricating Same". <u>Korean Patent No. 418279.</u></p> <p>9. A. Goyal, J. D. Budai, D. M. Kroeger, D. P. Norton, E. D. Specht and D. K. Christen, "Structures Having Enhanced Biaxial Texture and Method to Fabricating Same". <u>Japanese Patent No. 03601830.</u></p> <p>10. A. Goyal, J. D. Budai, D. M. Kroeger, D. P. Norton, E. D. Specht and D. K. Christen, "Structures Having Enhanced Biaxial Texture and Method to Fabricating Same". <u>Canadian Patent No. 2,217,822.</u></p> <p>11. A. Goyal, E. Specht, D. Kroeger and M. Paranthaman, "Method of Forming Biaxially Textured Alloy Substrates and Devices Thereon - I," <u>US Patent 5, 964, 966.</u>, October 12, 1999.</p> <p>Patent application was a combination of five inventions listed below:</p> <ol style="list-style-type: none"> A. Goyal and D. M. Kroeger, "Method of Forming Biaxially Textured Articles Having Reduced Magnetism," ORNL/LMER Docket ERID No. 366. A. Goyal, D. M. Kroeger and M. Paranthaman, "Method of Forming Biaxially Textured Articles Having Reduced Magnetism," ORNL/LMER Docket ERID No. 367. A. Goyal, "Method of Forming Biaxially Textured Articles," ORNL/LMER Docket ERID No. 368. A. Goyal, E. D. Specht and D. M. Kroeger "Method of Forming Biaxially Textured Articles," ORNL/LMER Docket ERID No. 199. A. Goyal and D. M. Kroeger, "Method of Forming Biaxially Textured Articles," ORNL/LMER Docket ERID No. 363. <p>12. J. D. Budai, D. K. Christen, A. Goyal, Q. He, D. M. Kroeger, D. F., Lee, D. P. Norton, B. C. Sales and E. D. Specht, "High-T_c YBCO Superconductor Deposited on Biaxially Textured Ni Substrate," <u>US Patent 5, 968, 877</u>, October 19, 1999.</p> <p>13. S.S. Shoup, M. Paranthaman, D.B. Beach, D.M. Kroeger, and A. Goyal, "Methods of Sol-gel Deposition of Buffer Layers on Biaxially Textured Ni Substrates," <u>US Patent 6, 077, 344</u>, June 20, 2000.</p> <p>14. A. Goyal, E. Specht, D. Kroeger and M. Paranthaman, "Method of Forming Biaxially Textured Alloy Substrates and Devices Thereon - II," <u>US Patent 6, 106, 615</u>, August 22, 2000.</p> <p>15. D. F. Lee, D. M. Kroeger and A. Goyal, "Method of Deforming a Biaxially Textured Buffer Layer on a Textured Metallic Substrate and Articles Therefrom," <u>US Patent 6, 114, 287</u>, September 5, 2000.</p> <p>16. A. Goyal, "Method for Making Biaxially Textured Articles by Plastic Deformation," <u>US Patent No. 6,180, 570</u>.</p> <p>17. M. Paranthaman, D.F. Lee, D.M. Kroeger, and A. Goyal, "Buffer Layers on Rolled Nickel or Copper as Superconductor Substrates," <u>U.S. Patent No. 6,150,034</u>, November 21, 2000.</p> <p>18. M. Paranthaman, D.F. Lee, D.M. Kroeger, and A. Goyal, "Buffer Layers on Metal Surfaces Having Biaxial Texture as Superconductor Substrates," <u>U.S. Patent No. 6,156,376</u>, December 5, 2000.</p> <p>19. M. Paranthaman, D.F. Lee, D.M. Kroeger, and A. Goyal, "Buffer Layers on Metal Surfaces Having Biaxial Texture as Superconductor Substrates," <u>U.S. Patent No. 6,159,610</u>, December 12, 2000.</p> <p>20. A. Goyal, "Biaxially Textured Articles formed by Plastic Deformation," <u>US Patent No. 6,180,570</u>, January 30, 2001.</p> <p>21. S.S. Shoup, M. Paranthaman, D.B. Beach, D.M. Kroeger, and A. Goyal, "Buffer Layers on Biaxially Textured Metal Substrates," <u>US Patent 6, 235,402</u>, May 22, 2001.</p> <p>22. A. Goyal, "Biaxially Textured Articles formed by Plastic Deformation," <u>US Patent No. 6,375,768</u>.</p> <p>23. D. F. Lee, D. M. Kroeger and A. Goyal, "Preferentially oriented, High temperature</p>
--	--

superconductors by seeding and a method for their preparation," US Patent 6,256,521, July 3, 2001.

24. M. Paranthaman, A. Goyal, D. M. Kroeger and F. A. List, "MgO buffer layers on rolled nickel or copper as superconductor substrates," US Patent 6,261,704, July 17, 2001.

25. R.K. Williams, M. Paranthaman, T.G. Chirayil, D.F. Lee, A. Goyal, and R. Feenstra, "Rare Earth Zirconium Oxide Buffer Layers on Metal Substrate," U.S. Patent No. 6,270,908, August 7, 2001.

26. A. Goyal, R. Williams and D. M. Kroeger, "Methods of Forming Biaxially Textured Articles by Powder Metallurgy," US Patent No. 6,331,199, December 18, 2001.

27. A. Goyal, "Method for making biaxially textured articles by plastic deformation," US Patent 6,375,768, April 23, 2002.

28. R.K. Williams, M. Paranthaman, T.G. Chirayil, D.F. Lee, A. Goyal, and R. Feenstra, "Laminate Article," U.S. Patent No. 6,399,154, June 4, 2002.

29. D. B. Beach, J. S. Morell, M. Paranthaman, T. Chirayil, E. D. Specht and A. Goyal, "Method of Depositing Buffer Layers on RABiTS from Solution", U.S. Patent No. 6,440,211, August 27, 2002.

30. A. Goyal and D. M. Kroeger, "Powder-in-tube and Thick-Film Methods of Fabricating High Temperature Superconductors Having Enhanced "Biaxial" Texture," ORNL/LMER Docket ESID No. 1697-X, US Patent application filed.

31. A. Goyal, R. Williams and D. M. Kroeger, "Biaxially Textured Articles Formed by Powder Metallurgy," US Patent No. 6,447,714, September 10, 2002.

32. A. Goyal, D. M. Kroeger, M. Paranthaman, D. F. Lee, R. Feenstra and D. P. Norton, "Method of Depositing a Protective Layer over a Biaxially Textured Alloy Substrate and Composition Therefrom", U.S. Patent No. 6,451,450, September 17, 2002.

33. M. Paranthaman, A. Goyal, D. M. Kroeger and F. A. List, "Method for making MgO buffer layers on rolled nickel or copper as superconductor substrates," ORNL/LMER Docket ERID No. 218. US Patent 6,468,591, October 22, 2002.

34. D. F. Lee, D. M. Kroeger and A. Goyal, "Method for Preparing Preferentially Oriented, High Temperature Superconductors using Solution Reagents," ORNL/LMER Docket ERID No. 534. US Patent 6,486,100, November 26, 2002.

35. A. Goyal, R. Williams and D. M. Kroeger, "Biaxially Textured Articles Formed by Powder Metallurgy," US Patent 6,599,346, July 29, 2003.

36. A. Goyal, R. Williams and D. M. Kroeger, "Biaxially Textured Articles Formed by Powder Metallurgy," US Patent 6,602,313, August 5, 2003.

37. A. Goyal, R. Williams and D. M. Kroeger, "Biaxially Textured Articles Formed by Powder Metallurgy," US Patent 6,607,838, August 19, 2003.

38. A. Goyal, R. Williams and D. M. Kroeger, "Biaxially Textured Articles Formed by Powder Metallurgy," US Patent 6,607,839, August 19, 2003.

39. A. Goyal, R. Williams and D. M. Kroeger, "Biaxially Textured Articles Formed by Powder Metallurgy," US Patent 6,610,413, August 26, 2003.

40. A. Goyal, R. Williams and D. M. Kroeger, "Biaxially Textured Articles Formed by Powder Metallurgy," US Patent 6,610,614, August 26, 2003.

41. A. Goyal, R. Williams and D. M. Kroeger, "Biaxially Textured Articles Formed by Powder Metallurgy," US Patent 6,635,097, October 21, 2003.

42. A. Goyal and D. M. Kroeger, "Powder-in-tube and Thick Film Methods of Fabricating High Temperature Superconductors Having Enhanced Biaxial Texture," US Patent 6,645,313, November 11, 2003.

43. D. B. Beach, J. S. Morell, M. Paranthaman, T. Chirayil, E. D. Specht and A. Goyal, "Laminate Articles on Biaxially Textured Metal Substrates", US Patent 6,663,976, December 16, 2003.

44. A. Goyal, "Method of Depositing Epitaxial Layers on a Substrate," US Patent 6,670,308, December 30, 2003.

45. D. P. Norton, A. Goyal and C. Park, "Buffer Architecture for Biaxially Textured Structures and Method of Fabricating Same," US Patent 6,716,795, April 6, 2004.

46. M. Paranthaman, T. Aytug, D. K. Christen, R. Feenstra and A. Goyal, "Buffer Layers and Articles for Electronic Devices," US Patent 6764770, July 20, 2004.
47. S. Sambasivan, A. Goyal, S. A. Barnett, I. Kim, D. M. Kroeger, "Conductive and Robust Nitride Buffer Layers on Biaxially Textured Substrates," US Patent 6,784,139, August 31, 2004.
48. A. Goyal, R. Williams and D. M. Kroeger, "Biaxially Textured Articles Formed by Powder Metallurgy," US Patent 6,790,253, September 14, 2004.
49. A. Goyal, R. Williams and D. M. Kroeger, "Biaxially Textured Articles Formed by Powder Metallurgy," US Patent 6,797,030, September 28, 2004.
50. A. Goyal, R. Williams and D. M. Kroeger, "Biaxially Textured Articles Formed by Powder Metallurgy," US Patent 6,846,344, January 25, 2005.
51. A. Goyal, "Semiconductor Films on Iridium Substrates," US Patent 6,872,988, March 29, 2005.
52. A. Goyal, R. Williams and D. M. Kroeger, "Biaxially Textured Articles Formed by Powder Metallurgy," US Patent 6,890,369, May 10, 2005.
53. A. Goyal, R. Williams and D. M. Kroeger, "Biaxially Textured Articles Formed by Powder Metallurgy," US Patent 6,902,600, June 07, 2005.
54. A. Goyal, R. Williams and D. M. Kroeger, "Biaxially Textured Articles Formed by Powder Metallurgy," US Patent Application Pending, Divisional XI.
55. A. Goyal, R. Williams and D. M. Kroeger, "Biaxially Textured Articles Formed by Powder Metallurgy," US Patent Application Pending, Divisional XII.
56. A. Goyal, R. Williams and D. M. Kroeger, "Biaxially Textured Articles Formed by Powder Metallurgy," US Patent Application Pending, Divisional XIII.
57. A. Goyal, "Textured Substrate and Devices Thereof," US Patent 7,087,113, Aug. 08, 2006.
58. A. Goyal, "Doped Y₂O₃ buffer layers for laminated conductors," US Patent 7,258,928, August 21, 2007.
59. A. Goyal, "Conductive and robust nitride buffer layers on biaxially textured substrates," US Patent 7,510,997, March 31, 2009.
60. A. Goyal, "Doped LZO buffer layers for laminated conductors," US Patent 7,683,010, March 23, 2010.
61. A. Goyal, "Strong, non-magnetic, cube textured alloy substrates," US Patent 7,879,161, February 1, 2011.
62. A. Goyal, "Semiconductor-based, large-area, flexible, electronic devices," US Patent 7,906,229, March 15, 2011.
63. A. Goyal, "Superconductor films with improved flux pinning and reduced AC losses," US Patent 7,919,435, April 5, 2011.
64. A. Goyal, "High performance devices enabled by epitaxial, preferentially oriented, nanodots and/or nanorods," US Patent 8,034,745, October 11, 2011.
65. A. Goyal, "High performance electrical, magnetic, electromagnetic and electrooptical devices enabled by three dimensionally ordered nanodots and nanorods," US Patent 8,119,571, February 21, 2012.
66. A. Goyal, "{100}<100> or 45°-rotated {100}<100>, semiconductor-based, large-area, flexible, electronic devices," US Patent 8,178,221, May 15, 2012.
67. A. Goyal and C. Blue, "Composite biaxially textured substrates using ultrasonic consolidation," US Patent 8,210,420, July 3, 2012.
68. A. Goyal, "Faceted ceramic fibers, tapes or ribbons and epitaxial devices therefrom," US Patent 8,227,082, July 24, 2012.
69. A. Goyal and C. Blue, "Composite biaxially textured substrates using ultrasonic consolidation," US Patent 8,424,745, April 23, 2012.
70. A. Goyal, "Faceted ceramic fibers, tapes or ribbons and epitaxial devices therefrom," US Patent 8,481,460, July 9, 2013.
71. A. Goyal, "Structures with three dimensional nanofences comprising single crystal segments," US Patent 8,518,526, August 27, 2013.
72. A. Goyal, "High performance superconducting devices enabled by three dimensionally ordered nanodots and/or nanorods," US Patent 8,536,098, September

17, 2013.

73. A. Goyal and Jusnoo Shin, "Nanocomposites for ultra high-density information storage, devices including the same, and methods of making the same," US Patent 8,685,549, April 01, 2014.
74. A. Goyal and S. H. Wee, "Buffer layers for REBCO films for use in superconducting devices," US Patent 8,748,350, June 10, 2014.
75. A. Goyal, M. Paranthaman and S. H. Wee, "Chemical solution seed layer for rabbits tapes," US Patent 8,748,349, June 10, 2014.
76. A. Goyal, "Semiconductor-based, large-area, flexible, electronic devices on {110}<100> oriented substrates," US Patent 8,795,854, August 5, 2014.
77. A. Goyal, "[100] or [110] aligned, semiconductor-based, large-area, flexible, electronic devices," US Patent 8,987,736, March 24, 2015.
78. A. Goyal, "Polycrystalline ferroelectric or multiferroic oxide articles on biaxially textured substrates and methods for making same," US Patent 8,993,092, March 31, 2015.
79. A. Goyal and D. M. Kroeger, "Method of Forming Biaxially Textured Articles by Physical Vapor Deposition," ORNL/LMER Docket ERID No. 374, Invention disclosure filed.
80. D. P. Norton, A. Goyal and C. Park, "Buffer Architecture for Biaxially Textured Structures and Method of Fabricating Same," ORNL/LMER Docket ERID 0726, US Patent Application Pending, Divisional I.
81. S. Sambasivan, A. Goyal, S. A. Barnett, I. Kim, D. M. Kroeger, "Conductive and Robust Nitride Buffer Layers on Biaxially Textured Substrates," US Patent 7510997, issued 3/31/2009.
82. A. Goyal, "A Textured, Near Single-Crystal-Like Buffered Substrate and Devices Thereof", ORNL/UT-Battelle Docket ERID 0963, US Patent Application Pending.
83. A. Goyal, "Method of Fabricating Crystalline, Epitaxial Diamond Films on Iridium Substrates," US Patent Application Pending.
84. M. Paranthaman, A. Goyal, D. M. Kroeger and F. A. List, "Method for Making Buffer Layers on Rolled Ni or Cu as Superconductor Substrates," US Patent Application Pending, Divisional I.
85. A. Goyal, D. M. Kroeger and M. Paranthaman, "Method of Fabricating Tl-Containing Conductors," ORNL/LMER Docket ESID No. 1852-X, Invention disclosure filed.
86. A. Goyal, and D. M. Kroeger, "Method of Enhancing Intragranular Superconducting Properties by Controlled Addition of Pinning Centers," ORNL/LMER Docket ESID No. 1853-X, Invention disclosure filed.
87. A. Goyal and D. M. Kroeger, "Method of Forming Tl-1223 Precursors," ORNL/LMER Docket ESID No. 1867-X, Invention disclosure filed.
88. A. Goyal, S. A. David and D. M. Kroeger, "Method of Forming Joints in Biaxially Textured Metals", ORNL/LMER Docket ERID 0758, Invention disclosure filed.
89. A. Goyal and D. M. Kroeger, "Method to Fabricating Polycrystalline, HTS Conductors with Reduced Weak-link Effects at Grain Boundaries", ORNL/LMER Docket ERID 0757, Invention disclosure filed.
90. A. Goyal and D. M. Kroeger, "Method to Form Superconducting Wire for AC Applications", ORNL/LMER Docket ERID 0826, Invention disclosure filed.
91. A. Goyal, "A Textured, Near Single-Crystal-Like Buffered Substrate and Devices Thereof", ORNL/UT-Battelle Docket ERID 0964, Invention disclosure filed.
92. A. Goyal, "Method of Fabricating a Textured, Buffered Substrate and Article Formed Thereby," ORNL/UT-Battelle Docket ERID 0871, Invention disclosure filed.
93. A. Goyal, "Method and Article of Fabricating a Substrate which has an Extremely Sharp Biaxial Texture and Article formed Thereby," ORNL/UT-Battelle Docket ERID 0873, Invention disclosure filed.
94. A. Goyal, "Method and Article of Fabricating a Substrate which has an Extremely Sharp Biaxial Texture and Article formed Thereoff," ORNL/UT-Battelle Docket ERID 0874, Invention disclosure filed.

95. A. Goyal, "A Textured, Buffered Substrate and Devices Thereon," ORNL/UT-Battelle Docket ERID 0875, Invention disclosure filed.

96. A. Goyal, "Method and Article of Forming a Substrate with a Certain Microstructure for Growth of Epitaxial Oxides, Nitrides as well as Electromagnetic Device Layers such as High Temperature Superconductors," ORNL/UT-Battelle Docket ERID 0876, Invention disclosure filed.

97. A. Goyal, "Method and Article of Fabricating Powder-in-tube and Thick Film form Superconductors to get High Performance by Simple Microstructural Modification," ORNL/UT-Battelle Docket ERID 0877, Invention disclosure filed.

98. A. Goyal, "Method of Fabricating Polycrystalline Pb-alloy Electrodes Which Result in Enhanced Operating Life and Performance of Lead Acid Batteries by Grain Boundary Engineering," ORNL/UT-Battelle Docket ERID 1000, Invention disclosure filed.

99. A. Goyal, "Method to Fabricate Crystalline, Epitaxial Coatings of Oxides on Substrates," ORNL/UT-Battelle Docket ERID 1001, Invention disclosure filed.

100. A. Goyal and D. M. Kroeger, "Method to Fabricate Biaxially Textured Articles," ORNL/UT-Battelle Docket ERID 1002, Invention disclosure filed.

101. A. Goyal, "Method of Fabricating Epitaxial Films of Superconducting MgB2," ORNL/UT-Battelle Docket ERID 1040, Invention disclosure filed.

102. A. Goyal, "Method of Fabricate Low Cost, Flexible, Semiconductor-based Devices," ORNL/UT-Battelle Docket ERID 1041, Invention disclosure filed.

103. A. Goyal, "Method of Fabricating Biaxially Textured Substrates," ORNL/UT-Battelle Docket ERID 1042, Invention disclosure filed.

104. A. Goyal, "Buffer Layers and Articles for Electronic Devices," ORNL/UT-Battelle Docket ERID 1043, Invention disclosure filed.

105. A. Goyal, "Method to Fabricate Epitaxial Diamond Films for a Range of Applications – 1, ORNL/UT-Battelle Docket ERID 1077, Invention disclosure submitted.

106. A. Goyal, "Method to Fabricate Epitaxial Diamond Films for a Range of Applications – 2, ORNL/UT-Battelle Docket ERID 1078, Invention disclosure submitted.

107. A. Goyal, "Method to Fabricate Epitaxial Diamond Films for a Range of Applications – 3, ORNL/UT-Battelle Docket ERID 1079, Invention disclosure submitted.

108. A. Goyal, "Method to Fabricate Epitaxial Diamond Films for a Range of Applications – 4, ORNL/UT-Battelle Docket ERID 1080, Invention disclosure submitted.

109. A. Goyal, "Method to Fabricate Epitaxial Diamond Films for a Range of Applications – 5, ORNL/UT-Battelle Docket ERID 1081, Invention disclosure submitted.

110. A. Goyal and Y. Li, "Method to Fabricate YBCO Films via an Ex-situ Route," ORNL/UT-Battelle Docket ERID 1112, Invention disclosure submitted.

111. A. Goyal and C. Thieme, "Ternary Non-Magnetic Alloy for Biaxially Textured Substrates," ORNL/UT-Battelle Docket ERID 1129C, Invention disclosure submitted.

112. A. Goyal, "Method of Fabricating Ga-As Based Devices on Low-Cost Substrates Using Scalable Methods and Resulting Articles Therefrom," ORNL/UT-Battelle Docket ERID 1082, Invention disclosure submitted.

113. A. Goyal, "Copper-based Substrates for Application with a Biaxially Textured Buffer Layer," ORNL/UT-Battelle Docket ERID 1204, Invention disclosure submitted.

114. A. Goyal, "Textured Substrates for a Range of Applications," ORNL/UT-Battelle Docket ERID 1205, Invention disclosure submitted.

115. A. Goyal, "Biaxially Textured Copper-based Substrates," ORNL/UT-Battelle Docket ERID 1206, Invention disclosure submitted.

116. A. Goyal, "Method of Fabricating Copper-Based, Textured, Ternary Alloys for a Range of Applications" ORNL/UT-Battelle Docket ERID 1218, Invention disclosure

submitted.

- 117.** A. Goyal, "Substrate for Fabrication of Low Cost, Flexible, Semiconductor-Based Devices," ORNL/UT-Battelle Docket ERID 1243, Invention disclosure submitted.
- 118.** A. Goyal and Yongli Xu, "Fabrication of high-J_c YBCO thick films via solution processing," ORNL/UT-Battelle Docket ERID 1358, Invention disclosure submitted.
- 119.** A. Goyal, "Fabrication of solution derived epitaxial films," ORNL/UT-Battelle Docket ERID 1362, Invention disclosure submitted.
- 120.** A. Goyal, "Fabrication of round wires for epitaxial HTS," Invention disclosure submitted.
- 121.** A. Goyal, L. Heatherly, F. A. List, D. Lee, M. Paranthaman, C. Cantoni and R. Feenstra, "Simplified Buffer Stack for RABiTS," ERID 1401, Invention disclosure submitted.
- 122.** A. Goyal, "Method to Fabricate OLED's and other Electronic Devices," ERID 1397, Invention disclosure submitted.
- 123.** A. Goyal, D. Lee, F. List and L. Heatherly, "Modified Buffer Stack for Epitaxial Superconductors on RABiTS," ERID 1399, Invention disclosure submitted.
- 124.** M. Paranthaman, U. Schoop, A. Goyal, C. Thieme, D. Verebelyi and M. Rupich, ERID 1457C, Invention disclosure submitted.
- 125.** A. Goyal and S. Kang, "Method of Forming Self-Aligned Nano-Dots and Nano-Rods within a Superconductor to Enhance Properties Thereof," ERID 1449, Invention disclosure submitted.
- 126.** A. Goyal, "Graphite Fiber Reinforced Cu-alloy Composites for Overhead Transmission Line Cores," Invention disclosure submitted. IDR #175.
- 127.** A. Goyal, "Method to Fabricate a Low Aspect Ratio Substrate for Epitaxial Growth of Materials," Invention disclosure submitted. IDR #176.
- 128.** A. Goyal, "Novel Process for Fabrication of High Flux Density Transformer Cores," Invention disclosure submitted. IDR #262.
- 129.** A. Goyal, "Novel Method for Fabrication of Cost Effective, High Performance Hydrogen Membrane Fuel Cells," Invention disclosure submitted. IDR #269.
- 130.** M. Paranthaman and A. Goyal, "Methods to improve the texture of the buffer layers for YBCO coated conductors," Invention disclosure submitted, IDEA 05-76.
- 131.** V. Selvamanickam, M. Paranthaman and A. Goyal, "High Throughput Buffer Layers for IBAD-MgO templates without the homoepi MgO layers," Invention disclosure submitted, IDEA 05-176.
- 132.** A. Goyal, "HTS Conductors with Controlled Grain Boundaries," Invention disclosure submitted, IDEA 05-180.
- 133.** A. Goyal, "Epitaxial Devices on Structural Ceramic Fibers," US Patent Application Filed, IDEA 05-179.
- 134.** A. Goyal, "Epitaxial Devices on Structural Ceramic Fibers," PCT Patent Application Filed.
- 135.** A. Goyal, "Non-magnetic and Mechanically Strong, Cube Textured Ni-alloy for a Range of Applications," Invention disclosure submitted, IDEA 05-200.
- 136.** A. Goyal, "Single-crystal-like Electocaloric Device," Invention disclosure submitted, IDEA 05-201.
- 137.** A. Goyal, "M-plane and A-plane oriented, single-crystal, structural fibers for a range of electronic applications," Invention disclosure submitted, IDEA 05-424.
- 138.** A. Goyal, "A novel method for improving flux-pinning and possibly achieving HTS filamentization," Invention disclosure submitted, IDEA 05-425.
- 139.** A. Goyal, "Method to make single crystal substrates for HTS applications," Invention disclosure submitted, IDEA 05-426.
- 140.** A. Goyal, "Method to fabricate single crystal wire of metals and alloys," Invention disclosure submitted, IDEA 05-429.
- 141.** A. Goyal, "Method to fabricate high-flux density transformer materials in the form of sheets and/or wires," Invention disclosure submitted, IDEA 05-430.
- 142.** A. Goyal, "Vertically-Aligned, Epitaxial Nanorod Array on Flexible, Single-Crystal or Single-Crystal-Like Substrates for Nanoelectronics and Energy Conversion

	<p>Applications,” <u>Invention disclosure submitted</u>, IDEA 05-482.</p> <p>143.A. Goyal and C. Blue, “Composite biaxially textured substrates using Ultrasonic Consolidation or Bonding,” <u>Patent Application in Process</u>, IDEA 05-590.</p> <p>144.A. Goyal and S. H. Wee, “Improved Method of Growing CeO₂ and YSZ Buffer Layers for YBCO HTS on SSIFFS”, <u>Invention disclosure submitted</u>, ID 2259, S-115,295, 2009.</p> <p>145.A. Goyal, S. H. Wee and J. Shin, “Phase Separated, Epitaxial, Nanostructured LMO+MgO Composite Films,” <u>Invention disclosure submitted</u>, ID 2258, S-115, 294, 2009.</p> <p>146.A. Goyal and S. H. Wee, “Three Dimensional, Biaxially-Textured Oxide Nanofence Comprising Single Crystal, MgO Nanobelt Segments,” <u>Patent Application Submitted</u>, ID 2243, S-115,277, 2009.</p> <p>147.A. Goyal and S. H. Wee, “Enhancement in Critical Current Density via Incorporation of Nanoscale Ba₂(Y,RE)TaO₆ in REBCO films,” <u>Provisional Patent Application Submitted</u>, ID 2286, S-115,325, 2009.</p> <p>148.A. Goyal and S. H. Wee, “Enhancement in Critical Current Density via Incorporation of Nanoscale Ba₂(Y,RE)NbO₆ in REBCO Films,” <u>Provisional Patent Application Submitted</u>, ID 2287, S-115,326, 2009.</p> <p>149.A. Goyal, “Cap Layer for YBCO Films for Use in Superconducting Wires,” <u>Invention disclosure submitted</u>, ID 2296, S-115,335, 2009.</p> <p>150.A. Goyal, S. H. Wee and M. Paranthaman, “Chemical Solution Seed Layer for RABiTS Tapes,” <u>Invention disclosure submitted</u>, ID 2297, S-115,336, 2009.</p> <p>151.A. Goyal, <u>US Patent Application - US20080265255</u>, “Semiconductor-based, large-area, flexible, electronic devices on <100> oriented substrates”.</p> <p>152.A. Goyal, <u>US Patent Application - US20080230779</u>, “[100] Or [110] aligned, semiconductor-based, large-area, flexible, electronic devices”.</p> <p>153.A. Goyal, <u>US Patent Application - US20080176749</u>, “High performance devices enabled by epitaxial, preferentially oriented, nanodots and/or nanorods”.</p> <p>154.A. Goyal, <u>US Patent Application - 11/498,120</u>, “High performance, electrical, magnetic, electromagnetic and electro-optical devices enabled by three dimensionally ordered nanodots and nanorods”.</p> <p>155.A. Goyal, <u>US Patent Application - US20080217622</u>, “Novel, semiconductor-based, large-area, flexible, electronic devices”.</p> <p>156.A. Goyal, <u>US Patent Application - US20090038714</u>, “Strong, Non-magnetic, cube textured alloy substrates”.</p> <p>157.A. Goyal, <u>US Patent Application - US20080176749</u>, “High performance devices enabled by epitaxial, preferentially oriented, nanodots and/or nanorods”.</p> <p>158.A. Goyal, <u>US Patent Application - 11/498,120</u>, “High performance, electrical, magnetic, electromagnetic and electro-optical devices enabled by three dimensionally ordered nanodots and nanorods”.</p> <p>159.A. Goyal, “Superconductor Films with Improved Flux-pining and Reduced Ac Losses,” PCT application filed, <u>WIPO Patent Application WO/2010/044928</u>.</p> <p>160.A. Goyal, “Faceted Ceramic Fibers, Tapes or Ribbons and Epitaxial Devices Thereform,” PCT application filed, <u>WIPO Patent Application WO/2009/042363</u>.</p> <p>161.A. Goyal, <u>US Patent Application - 12/242,021</u>, “Superconductor films with improved flux pinning and reduced AC losses”.</p> <p>162.A. Goyal and S.H. Wee, <u>US Patent Application - 12/711309</u>, “Structures with Three Dimensional Nanofences Comprising Single Crystal Segments”.</p> <p>163.A. Goyal, S.H. Wee, C. Cantoni and E. Specht, <u>US Patent Application - 12/850,398</u>, “Critical current density enhancement via incorporation of nanoscale Ba₂(Y,RE)NbO₆ in REBCO films”.</p> <p>164.A. Goyal, S.H. Wee, C. Cantoni and E. Specht, <u>US Patent Application - 12/850,521</u>, “Critical current density enhancement via incorporation of nanoscale Ba₂(Y,RE)TaO₆ in REBCO films”.</p> <p>165.A. Goyal, <u>US Patent Application - 12/849,970</u>, “Vertically-aligned nanopillar array on flexible, biaxially-textured substrates for nanoelectronics and energy conversion</p>
--	---

	<p>applications”.</p> <p>166.A. Goyal, <u>US Patent Application – 12/011,450</u>, “<100> or 45 degrees-rotated <100>, semiconductor-based, large-area, flexible, electronic devices”.</p> <p>167.A. Goyal, <u>US Patent Application – 13/136,357</u>, “High performance superconducting devices enabled by three dimensionally ordered nanodots and/or nanorods”.</p> <p>168.A. Goyal and Junsoo Shin, <u>US Patent Application – 12/956598</u>, “Nanocomposites for ultra high density information storage, devices including the same, and methods of making the same”.</p> <p>169.A. Goyal, <u>US Patent Application – 13/030260</u>, “Polycrystalline ferroelectric or multiferroic oxide articles on biaxially textured substrates and methods for making same”.</p> <p>170.A. Goyal, <u>US Patent Application – 13/088,179</u>, “Buffer layers for REBCO films for use in superconducting films”.</p> <p>171.A. Goyal, <u>US Patent Application – 13/088,182</u>, “Chemical solution seed layer for RABiTS tapes”.</p> <p>172.A. Goyal, <u>US Patent Application – 13/529,410</u>, “Faceted Ceramic Fibers, Tapes or Ribbons and Epitaxial Devices Therefrom”.</p> <p>173.A. Goyal and C. Blue, “Composite biaxially textured substrates using ultrasonic consolidation,” PCT application filed, <u>WIPO Patent Application WO/2012/106196</u>.</p> <p>174.A. Goyal and S. H. Wee, “Critical current density enhancement via incorporation of nanoscale Ba₂(Y,RE)TaO₆ in REBCO films, <u>WIPO Patent Application WO/2011/017454</u>.</p> <p>175.A. Goyal and S. H. Wee, “Critical current density enhancement via incorporation of nanoscale Ba₂(Y,RE)TaO₆ in REBCO films, <u>WIPO Patent Application WO/2011/017439</u>.</p> <p>176.A. Goyal, “Vertically-aligned nanopillar array on flexible, biaxially-textured substrates for nanoelectronics and energy conversion applications,” <u>WIPO Patent Application WO/2011/017392</u>.</p> <p>177.A. Goyal, “Superconductor films with improved flux pinning and reduced AC losses,” <u>WIPO Patent Application WO/2010/044928</u>.</p> <p>178.A. Goyal, “Semiconductor-based, large-area, flexible, electronic devices on {110}<100> oriented substrates,” <u>WIPO Patent Application WO/2009/110872</u>.</p> <p>179.A. Goyal, “[100] OR [110] aligned, semiconductor-based, large-area, flexible, electronic devices,” <u>WIPO Patent Application WO/2009/096932</u>.</p> <p>180.A. Goyal, “Semiconductor-based, large-area, flexible, electronic devices,” <u>WIPO Patent Application WO/2009/096931</u>.</p> <p>181.A. Goyal, “Semiconductor-based, large-area, flexible, electronic devices,” <u>WIPO Patent Application WO/2009/096931</u>.</p> <p>182.A. Goyal, “Semiconductor-based, large-area, flexible, electronic devices on {110}<100> oriented substrates,” <u>European Patent Application EP2266135</u>.</p> <p>183.A. Goyal, “Semiconductor-based, large-area, flexible, electronic devices,” <u>European Patent Application EP2250674</u>.</p> <p>184.A. Goyal, “Ý100’OR Ý110’aligned, Semiconductor-based, large-area, flexible, electronic devices,” <u>European Patent Application EP2250664</u>.</p> <p>185.A. Goyal, “Faceted Ceramic Fibers, Tapes or Ribbons and Epitaxial Devices Therefrom,” <u>European Patent Application EP2205434</u>.</p> <p>186.A. Goyal, “Scalable Fabrication of One-Dimensional and Three-Dimensional Conducting, Nanostructured Templates for Diverse Applications Such as Battery Electrodes for Next Generation Batteries,” <u>US20140342236A1</u>.</p> <ul style="list-style-type: none"> • Trademark: RABiTS™ (Rolling-Assisted-Biaxially-Textured-Substrates) • Trademark: SSIFFS™ (Sapphire Single-crystal Faceted Fiber Substrates)
--	---