

Dr Alexander A. Balandin
Distinguished Professor of Electrical and Computer Engineering,
University of California Riverside
USA

Office of the Chancellor

4108 Hinderaker Hall

900 University Avenue

Riverside, CA 92521

From: Kim A. Wilcox, Chancellor
University of California Riverside

To: World Cultural Council

Re: Nomination of Professor Alexander Balandin for the “Albert Einstein” World Award of Science

November 12, 2021

Dear Members of the World Cultural Council,

As Chancellor of the University of California Riverside, I am writing to nominate one of our outstanding scientists for the World Award of Science: Professor Alexander Balandin. By all measures, Prof. Balandin’s pioneering discoveries in the area of nanotechnology, especially his work on low-dimensional materials like graphene, have revolutionized this area of scientific exploration and opened up new directions for research. (As one piece of evidence, I will point to over 57,000 citations to his publications.) Even more importantly, it also opened a broad spectrum of new practical applications, in products and technologies that affect everyday lives of people throughout the world. His discoveries already improved thermal management of electronic devices, are used in solar cells, and battery packs, and even in textiles. The impact of his work continues to grow and will contribute to improving efficiency, reducing energy consumption and our impact on the environment.

I should add that, in addition to being a pioneer in his scientific field, Prof. Balandin is a model scholar, who is also actively engaged in service for his research community and university, and in educating the next generation of scientist and engineers.

In the nomination package you will find details regarding Prof. Balandin’s research accomplishments and its impacts that have led me to asses Prof. Balandin as one of the world’s truly outstanding and impactful scientists.

Sincerely,

A handwritten signature in black ink, appearing to read "Kim A. Wilcox".

Kim A. Wilcox
Chancellor
University of California Riverside

Faculty of Engineering and
Physical Sciences
The University of Manchester
Po Box 88
Sackville Street
Manchester M60 1QD

+44(0)161 306 9100
www.manchester.ac.uk

To World Cultural Council

16 November 2021

RE: *Letter of support for Prof. A. Balandin*

Dear Sir or Madam:

This letter is to support the nomination of Prof. Alexander Balandin for the *Albert Einstein World Award of Science*.

I followed Prof. Balandin's work since 2008, when I attended several of his invited talks at the international conferences in the field of graphene, and discussed science with him at many professional meetings. Over the years, Prof. Balandin demonstrated genuine research creativity, deep knowledge of several different research fields, and track record of discoveries and innovations. In the following, I describe in some details a few examples of Prof. Balandin's innovative research and out-of-box thinking, which allowed me to refer to him as an ideal candidate for your award.

In 2004 – 2008, after the first exfoliation of graphene and initial electrical transport measurements, the attention of the international research community was focused on electronic properties of graphene. Prof. Balandin went to an entirely different direction. He conducted pioneering studies of phonon transport and thermal properties of graphene. He experimentally discovered that the intrinsic thermal conductivity of graphene can be exceptionally high and, in principle, exceed that of basal planes of bulk graphite – an absolutely non-trivial conclusion. His trailblazing Nano Letter (2008) paper on thermal conductivity of graphene created a whole new research area in the field graphene. He followed up with a series of papers, both experimental and theoretical, where he showed that the two-dimensional nature of graphene reveals itself not only in electronic but also in phononic properties.

In order to measure the thermal conductivity of graphene, Prof. Balandin came up with an unconventional use of Raman spectroscopy, essentially converting a Raman spectrometer into a heater and a thermometer. This innovative Raman optothermal method has been adopted in many laboratories, and used for investigation of thermal properties of a wide range of 2D materials. In 2012, Prof. Balandin published a pioneering paper on the use of graphene in thermal interface materials. This work expanded the graphene thermal field into the direction of applied research with numerous thermal management applications, including thermal pastes and thermal coatings. Graphene thermal applications have now found their way to the commercial products. Prof. Balandin remained at the vanguard the graphene thermal field, leading its development in both fundamental science and practical application directions.

Dr. K. S. Novoselov
Professor of Physics, Royal Society Research Fellow

Condensed Matter Group, School of Physics & Astronomy
Schuster Building, University of Manchester
Oxford Road, M13 9PL, Manchester
United Kingdom

Tel.: +44-(0)161-275 41 19 Fax: +44-(0)161-275 40 56
E-mail: kostya@manchester.ac.uk <http://www.kostya.graphene.org>

Prof. Balandin's contributions to the field of graphene and 2D materials are not limited to the phonon transport alone. In line with his characteristic approach of coming up with new ideas and research directions, he went on to study low-frequency current fluctuations in graphene, *i.e.* 1/f noise. He made seminal contributions in this area as well, publishing the first experimental reports that reveal the mechanism of 1/f noise in graphene and explained its difference from electronic noise in semiconductors and conventional metals. In an interesting and unexpected way, Prof. Balandin demonstrated that the noise in graphene can be turned into a signal and used to identify analyte without any surface functionalization. His *Nature Nano* (2013) paper became a standard reference source for information on noise in graphene devices. The 1/f noise research is important for sensor applications of graphene and other 2D materials.

In the decade after 2010, a lot of attention of the graphene and 2D materials community was directed to 2D van der Waals materials of the transition metal dichalcogenide (TMD) group. Most of the researchers were attempting to find 2D materials with a suitable band gap and a high mobility to replicate the action of the conventional field-effect transistor. Prof. Balandin, again, demonstrated creativity and innovation by focusing on 2D TMD materials with the charge-density-wave properties. In 2012, he reported a possibility of controlling the phase transition temperature in 2D TMD van der Waals materials by changing their thickness. In 2016, he demonstrated the first charge-density-wave device operating at room temperature. His *Nature Nano* (2016) paper, where a new device functionality was achieved with the intrinsic properties of three different 2D materials, was an important landmark in the 2D materials field. It helped in the rebirth of the charge-density-wave field, expanding it to 2D materials, and demonstrated the pathway for the charge-density-wave devices to practical applications.

To summarize, Prof. Balandin has made exceptional research contributions in broad research areas, ranging from nanofabrication and electronic transport to Raman spectroscopy and thermal transport. I am confident that he is an ideal candidate for the *Albert Einstein World Award of Science* by the World Cultural Council.

Sincerely yours

K. S. Novoselov

A handwritten signature in black ink, appearing to read "Novoselov".

Dr. K. S. Novoselov
Professor of Physics, Royal Society Research Fellow

Condensed Matter Group, School of Physics & Astronomy
Schuster Building, University of Manchester
Oxford Road, M13 9PL, Manchester
United Kingdom

Tel.: +44-(0)161-275 41 19 Fax: +44-(0)161-275 40 56
E-mail: kostya@manchester.ac.uk <http://www.kostya.graphene.org>

Faculty of Engineering and
Physical Sciences
The University of Manchester
Po Box 88
Sackville Street
Manchester M60 1QD

+44(0)161 306 9100
www.manchester.ac.uk

To World Cultural Council

16 November 2021

RE: *Letter of support for Prof. A. Balandin*

Dear Sir or Madam:

This letter is to support the nomination of Prof. Alexander Balandin for the *Albert Einstein World Award of Science*.

I followed Prof. Balandin's work since 2008, when I attended several of his invited talks at the international conferences in the field of graphene, and discussed science with him at many professional meetings. Over the years, Prof. Balandin demonstrated genuine research creativity, deep knowledge of several different research fields, and track record of discoveries and innovations. In the following, I describe in some details a few examples of Prof. Balandin's innovative research and out-of-box thinking, which allowed me to refer to him as an ideal candidate for your award.

In 2004 – 2008, after the first exfoliation of graphene and initial electrical transport measurements, the attention of the international research community was focused on electronic properties of graphene. Prof. Balandin went to an entirely different direction. He conducted pioneering studies of phonon transport and thermal properties of graphene. He experimentally discovered that the intrinsic thermal conductivity of graphene can be exceptionally high and, in principle, exceed that of basal planes of bulk graphite – an absolutely non-trivial conclusion. His trailblazing Nano Letter (2008) paper on thermal conductivity of graphene created a whole new research area in the field graphene. He followed up with a series of papers, both experimental and theoretical, where he showed that the two-dimensional nature of graphene reveals itself not only in electronic but also in phononic properties.

In order to measure the thermal conductivity of graphene, Prof. Balandin came up with an unconventional use of Raman spectroscopy, essentially converting a Raman spectrometer into a heater and a thermometer. This innovative Raman optothermal method has been adopted in many laboratories, and used for investigation of thermal properties of a wide range of 2D materials. In 2012, Prof. Balandin published a pioneering paper on the use of graphene in thermal interface materials. This work expanded the graphene thermal field into the direction of applied research with numerous thermal management applications, including thermal pastes and thermal coatings. Graphene thermal applications have now found their way to the commercial products. Prof. Balandin remained at the vanguard the graphene thermal field, leading its development in both fundamental science and practical application directions.

Dr. K. S. Novoselov
Professor of Physics, Royal Society Research Fellow

Condensed Matter Group, School of Physics & Astronomy
Schuster Building, University of Manchester
Oxford Road, M13 9PL, Manchester
United Kingdom

Tel.: +44-(0)161-275 41 19 Fax: +44-(0)161-275 40 56
E-mail: kostya@manchester.ac.uk <http://www.kostya.graphene.org>

Prof. Balandin's contributions to the field of graphene and 2D materials are not limited to the phonon transport alone. In line with his characteristic approach of coming up with new ideas and research directions, he went on to study low-frequency current fluctuations in graphene, *i.e.* 1/f noise. He made seminal contributions in this area as well, publishing the first experimental reports that reveal the mechanism of 1/f noise in graphene and explained its difference from electronic noise in semiconductors and conventional metals. In an interesting and unexpected way, Prof. Balandin demonstrated that the noise in graphene can be turned into a signal and used to identify analyte without any surface functionalization. His *Nature Nano* (2013) paper became a standard reference source for information on noise in graphene devices. The 1/f noise research is important for sensor applications of graphene and other 2D materials.

In the decade after 2010, a lot of attention of the graphene and 2D materials community was directed to 2D van der Waals materials of the transition metal dichalcogenide (TMD) group. Most of the researchers were attempting to find 2D materials with a suitable band gap and a high mobility to replicate the action of the conventional field-effect transistor. Prof. Balandin, again, demonstrated creativity and innovation by focusing on 2D TMD materials with the charge-density-wave properties. In 2012, he reported a possibility of controlling the phase transition temperature in 2D TMD van der Waals materials by changing their thickness. In 2016, he demonstrated the first charge-density-wave device operating at room temperature. His *Nature Nano* (2016) paper, where a new device functionality was achieved with the intrinsic properties of three different 2D materials, was an important landmark in the 2D materials field. It helped in the rebirth of the charge-density-wave field, expanding it to 2D materials, and demonstrated the pathway for the charge-density-wave devices to practical applications.

To summarize, Prof. Balandin has made exceptional research contributions in broad research areas, ranging from nanofabrication and electronic transport to Raman spectroscopy and thermal transport. I am confident that he is an ideal candidate for the *Albert Einstein World Award of Science* by the World Cultural Council.

Sincerely yours

K. S. Novoselov

A handwritten signature in black ink, appearing to read "Novoselov".

Dr. K. S. Novoselov
Professor of Physics, Royal Society Research Fellow

Condensed Matter Group, School of Physics & Astronomy
Schuster Building, University of Manchester
Oxford Road, M13 9PL, Manchester
United Kingdom

Tel.: +44-(0)161-275 41 19 Fax: +44-(0)161-275 40 56
E-mail: kostya@manchester.ac.uk <http://www.kostya.graphene.org>

November 12, 2021

World Cultural Council

Re.: Nomination of Prof. Alexander Balandin for the Albert Einstein World Award of Science

Dear Colleagues,

I would like to offer my strongest support to the nomination of Professor Alexander Balandin for the Albert Einstein World Award of Science of the World Cultural Council.

I have been following Alexander's research publications for more than 20 years. I had a few chances to meet him at conferences and coauthored several technical journal papers and one chapter on the noise reduction approaches in transistors. I am absolutely confident that Alexander is the right choice for this award.

Alexander is one of the brightest researchers I have met over my long academic and entrepreneurial career. He is the one who is constantly able to generate new ideas, pursue them in the lab, and implement them in practice. His wide educational background allows him to start with the innovative physical concept, synthesize the materials, nanofabricate prototype devices, and test them. He goes all the way from fundamental physics to engineering applications.

Alexander is an internationally recognized leader in nanoscience, electronics, phononics, and quantum materials research. His expertise covers a broad range of nanotechnology, materials science, electronics, photonics, phononics, and spintronics fields. He is widely regarded as a pioneer of the graphene thermal field who discovered experimentally and explained theoretically unique heat conduction properties of graphene and investigated graphene technologies for thermal management. His numerous research achievements include development of the phonon engineering approaches for nanoscale devices, electronic noise reduction in wide-band-gap-semiconductor electronics, the first demonstration of the charge-density-wave electronic devices operating at room temperature, and the proposals of many other innovative devices.

Alexander's academic standing is evident from major awards he received such as The MRS Medal from the Materials Research Society, The Vannevar Bush Faculty Fellow award from the U.S. government, The Brillouin Medal from the International Phononics Society, and the Pioneer of Nanotechnology Award from the IEEE Nanotechnology Council. His research is interdisciplinary; and he excelled in every element of it as seen from his numerous keynote talks at top international conferences and elections to Fellow status in many professional societies, including MRS, APS, IEEE, OSA, SPIE, IOP, IOM3 and AAAS. He has been among the Clarivate Analytics and Thomson Reuters Highly Cited Researchers in the Physics and Cross-Discipline categories for several years.

Alexander's creativity is exceptional. It may originate from this fundamental education, which include both theory and experiment, and passion for research. One day he can go to a Physics Department and give a

Rensselaer Polytechnic Institute

110 8th Street | Troy, New York 12180-3590 USA | CII 6015

Phone (518) 276-2201 | Fax (518) 276 2990 | E-mail: shurm@rpi.edu

Administrative Assistant (518) 276 6724 | Web: <https://www.ecse.rpi.edu/~shur/>

condensed-matter talk like a hard-core physicist. On another day, he can deliver an applied research talk at an Engineering Department or industry laboratory in a way easily understood by the engineering practitioners. The innovative ideas he generated span a wide range, from fundamental physics concepts to engineering solutions for specific problems.

In 1999, he came up with the idea of investigating the effects of the acoustic phonon confinement in nanostructures on the thermal conductivity of such structures. Nobody before him thought about it – everybody was studying the reduction in heat conduction owing to phonon – boundary scattering only. He pursued this direction theoretically and computationally for a decade, and after that built a Brillouin spectrometer and demonstrated it experimentally (Nature Com., 7, 13400 (2016)). In 2010 – 2015 period, while others were studying low-frequency noise in 2D materials in order to reduce it, he experimentally demonstrated the use of noise as a sensing signal in graphene and MoS₂ devices (Nano Lett., 12, 2294 (2012)), and then utilized noise measurements as spectroscopy of phase transitions in 2D charge-density-wave materials (Nano Letters, 18, 3630 (2018)). The list of such examples is too long to reproduce here.

Education of the future technology experts is a part of the professor's mission. Alexander performs this function exceptionally well. It is hard to find a better research supervisor and mentor than him. He graduated more than 37 PhDs who are advancing technology in such industry leaders as Apple, Intel, and Micron, to name a few. He is a champion of promoting diversity – among his PhD graduates, many are women and members of the underrepresented minorities in science and engineering – Hispanics and African Americans. His PhD students received various awards at professional conferences and project report workshops. Four of his PhD students received awards at the Best Doctoral Dissertation Competitions organized by the Society of Woman Engineers (SWE). Several of his students received awards at the Materials Research Society (MRS) Spring meetings. These are all indicators of exciting research and excellent mentorship.

Finally, concluding this letter, I would like to state that Professor Balandin is the best candidate for the prestigious Albert Einstein World Award of Science of the World Cultural Council.

Thank you.

Sincerely,

/Michael Shur/

Date: November 12, 2021
To: World Cultural Council
From: Chris Lynch
Dean, Bourns College of Engineering
William R. Johnson, Jr. Family Chair
RE: **Rationale for the nomination of Prof. Alexander Balandin for the “Albert Einstein World Award of Science”**

The advances in nanoscience, since its advent in early 2000's, have changed our understanding of matter and ushered technologies that were unthinkable a few decades ago. Nanomaterials can already be found in a variety of industrial and consumer products, in areas ranging from electronics to healthcare and environmental protection, and in the near future they will become ubiquitous, contributing to improved quality of life of today's world population.

Professor Balandin is one of the pioneers of the technological revolution that made these advances possible. His best-known contribution to the field of nanotechnology is the discovery of the thermal properties of graphene, that laid the foundation of the graphene thermal field. After the first exfoliation of graphene by Novoselov and Geim (Nobel Prize in Physics, 2010), when the international research community focussed on electronic properties of graphene, Professor Balandin had the foresight to study, instead, its thermal conduction. His Nano Letter (2008) paper, that reported uniquely high thermal conductivity of graphene is now cited more than 13200 times. Following this experimental discovery, he studied fundamental aspects of thermal transport in graphene, explaining the physical reasons for the thermal conductivity of graphene being higher than that of basal planes of bulk graphite (Nature Materials (2010 and 2011)). Then, together with his PhD students, he synthesized the first thermal interface materials (TIMs) with graphene and few-layer graphene, and, importantly, demonstrated the use of graphene in thermal technologies for heat removal. To these days, the graphene thermal field continues its rapid growth, both in fundamental science and engineering. Professor Balandin's achievements in this field have been recognized by the scientific community via The IEEE Pioneer of Nanotechnology Award, The MRS Medal, and The Brillouin Medal.

Professor Balandin's research of thermal properties of graphene and other van der Waals materials has led to development of commercial thermal management technologies, including TIMs and thermal phase change materials (PCM) with graphene/FLG fillers. Commercial TIMs and PCMs with graphene are now utilized for heat removal in electronics, battery packs and solar cells. The thermal properties of graphene are essential in composite substrates, heat-spreading coatings, and even textiles. All these applications are rooted in Professor Balandin's research on heat conduction in graphene.

Other scientific contributions of Professor Balandin in the area of nanoscience include the following:

- The invention of the Raman optothermal method for measuring thermal conductivity of graphene and two-dimensional (2D) materials, that has become conventional and adopted in laboratories worldwide.
- Demonstration of the first room-temperature charge-density-wave (CDW) quantum devices based on 2D van der Waals materials such as 1T-TaS₂ (Nature Nano (2016)). This development stimulated interest in practical applications of quantum materials.
- Discovery of the exceptional current carrying capacity of one-dimensional (1D) van der Waals materials such as TaSe₃. This discovery became instrumental in Professor Balandin's receiving the Vannevar Bush Faculty Fellowship from the U.S. government with the \$3M funding for research of 1D quantum materials.
- Synthesis of the first composites with 1D van der Waals metal fillers, and their application in electromagnetic (EM) interference shielding (Advanced Materials (2021)). Electromagnetic shielding is important for protecting humans and environment from excess EM radiation emanating from cell phones and other electromagnetic devices.
- Explanation of the electronic noise mechanism in various technologically important materials, and development of an innovative characterization technique based on low-frequency noise measurements.

Professor Balandin is not only an outstanding scientist — he is also an active member of his research community and dedicated educator. He has graduated 37 PhD students who are already making their own contributions to science and technology, working for hi-tech companies, government laboratories, and academia. Among his lasting achievements in the area of engineering education is the creation of the Materials Science and Engineering program at UC Riverside, for which he served as the Founding Chair. This now thriving program is providing undergraduate and graduate education in all areas of materials science, including nanotechnology. These contributions to engineering education further amplify Professor Balandin's impact on the field of nanotechnology.

Additional information about Professor Balandin's record can be found in the submitted materials, including his CV, publications, and reference letters, that include one letter from a Nobel Prize laureate Professor K. S. Novoselov.

In conclusion, Professor Balandin's eminent status as a pioneer in the field of nanotechnology, profound impact of his work on emerging technologies, and wide range of applications of his research that will contribute to improving lives of today's and future generations, make him uniquely eligible for the "Albert Einstein World Award of Science".

ALEXANDER A. BALANDIN

Distinguished Professor of Electrical and Computer Engineering
University of California Presidential Chair Professor of Materials Science and Engineering
Director, Phonon Optimized Engineered Materials (POEM) Center
University of California, Riverside, California 92521 USA
E-mail: balandin@ece.ucr.edu Web: <https://balandingroup.ucr.edu/>

EDUCATION

- B.S. in Mathematics, Moscow Institute of Physics and Technology, Russia, 1989
- M.S. in Applied Physics, Moscow Institute of Physics and Technology, Russia, 1991
- Ph.D. in Electrical Engineering, University of Notre Dame, USA, 1996
- Postdoctoral Research, University of California, Los Angeles, USA, 1997 – 1999

EMPLOYMENT HISTORY

- Distinguished Professor (2016 – present), Department of Electrical and Computer Engineering, University of California, Riverside, USA
- Director (2017 – 2020), Interim Director (2016 – 2017), UCR Nanofabrication Facility, University of California, Riverside, USA
- University of California Presidential Chair Professor (2013 – present), University of California, USA
- Director (2013 – present), Phonon Optimized Engineered Materials (POEM) Center, University of California, Riverside, USA
- Founding Chair (2006 – 2011), Materials Science and Engineering Program, University of California, Riverside, USA
- Visiting Professor (2005 – 2006), Department of Engineering, University of Cambridge, UK
- Professor (2005 – 2016), Associate Professor (2001 – 2005), Assistant Professor (1999 – 2001), Department of Electrical and Computer Engineering, University of California, Riverside, USA
- Research Engineer (1997 – 1999), Electrical Engineering Department, University of California, Los Angeles, USA
- Research Assistant (1991 – 1993), Moscow Institute of Physics and Technology (MIPT) and the Russian Space Agency, Dolgoprudny, Moscow Region, Russia

AWARDS AND RECOGNITIONS

- The Vannevar Bush Faculty Fellowship (VBFF) with \$3,000,000.00 research funding for the project “One-Dimensional Quantum Materials”, 2021 – present
- The Brillouin Medal – International Phononics Society (IPS), 2019
“For discovery of unique phonon properties of graphene, and contributions to the development of graphene thermal management applications.”
- Clarivate Analytics (Thomson Reuters) Highly Cited Researcher, 2015 – present (each year)
- Fellow of MRS – The Materials Research Society, 2014
- The MRS Medal – The Materials Research Society, 2013
“For discovery of the extraordinary high intrinsic thermal conductivity of graphene, development of an original optothermal measurement technique for investigation of thermal properties of graphene, and theoretical explanation of the unique features of the phonon transport in graphene”
- Fellow of IEEE – The Institute of Electrical and Electronics Engineering, 2013
- Fellow of APS – The American Physical Society, 2012
- Fellow of IOM3 – The Institute of Materials, Minerals and Mining, U.K., 2012

- Fellow of IOP – The Institute of Physics, U.K., 2012
- The Pioneer of Nanotechnology Award – IEEE, 2011
“For pioneering contributions to nanoscale phonon transport with applications in nanodevices, graphene devices, thermoelectric and thermal management of advanced electronics.”
- Fellow of SPIE - The International Society for Optical Engineering, 2011
- Fellow of OSA - The Optical Society of America, 2011
- Semiconductor Research Corporation (SRC) Inventor Award, USA, 2009, 2010
- Fellow of AAAS - The American Association for Advancement of Science, 2007
- Distinguished Lecturer, CNRS, Pierre and Marie Curie Institute, Paris, France, 2005
- Visiting Fellow, Pembroke College, University of Cambridge, UK, 2005
- Office of Naval Research (ONR) Young Investigator Award, Arlington, USA, 2002
- National Science Foundation (NSF) Faculty CAREER Award, 2001
- University of California Regents Faculty Award, USA, 2000
- US Civil Research and Development Foundation (CRDF) Award, Arlington, USA, 1999
- Merrill Lynch Innovative Engineering Research Award, WTC, New York, USA, 1998
- Elected Member, *Eta Kappa Nu* Engineering Honor Society, Notre Dame, USA, 1994
- *Summa Cum Laude*, Moscow Institute of Physics and Technology, Russia, 1991

JOURNAL EDITOR AND ADVISORY SERVICE

- Deputy Editor-in-Chief, Applied Physics Letters, 2016 – present
- Member of the Board of Advisors, Advanced Electronic Materials, 2016 – present
- Member of the Board of Advisors, Journal of Carbon Research, 2016 – present
- Senior Editor, IEEE Transactions on Nanotechnology, 2013 – 2015

PUBLICATION RECORD

Web of Science Publons (<https://publons.com/researcher/4062951/alexander-balandin/>) tracks 314 of my published works. I have been designated as a Clarivate Analytics (formerly Thomson Reuters) Highly Cited Researcher every year since 2015. This designation recognizers “the true pioneers in their fields over the last decade, demonstrated by the production of multiple highly-cited papers that rank in the top 1% by citations for field and year in the Web of Science. Of the world’s scientists, Clarivate™ Highly Cited Researchers truly are one in 1,000.” My h-index is 95, with the total number of citations above 57,000 (2021). My papers are cited more than 5,000 times per year. My citation record is entirely due to my own creative research work together with my PhD students during my tenure as a professor at UC Riverside. For a complete list of publications, visit my research group’s web-site at <https://balandingroup.ucr.edu/> or Google Scholar: <https://scholar.google.com/>.

SELECTED INTERNATIONAL PLENARY AND KEYNOTE CONFERENCE TALKS

- Keynote Talk, “Quasi 2D and 1D van der Waals quantum materials,” Low-Dimensional Materials and Devices Conference, SPIE Optics + Photonics, San Diego, USA, 2021
- Keynote Talk, “Two-dimensional charge-density-wave quantum materials,” Graphene and 2DM Online Conference: Fundamental Research Insights, Madrid, Spain, 2021
- Keynote Talk “Electronic properties and device applications of quasi-2D charge density wave materials,” Symposium – 2D Atomic and Molecular Sheets, Materials Research Society (MRS) Fall Meeting, 2020
- Plenary Lecture, “Low-frequency noise in low-dimensional van der Waals materials: The charge-density-wave effects, unusual Lorentzian and more,” 5th International Conference on Noise and Fluctuations (ICNF), Neuchâtel, Switzerland, 2019

- Plenary Lecture, “Phonons and thermal transport in graphene,” The 5th International Conference on Phononic Crystals, Metamaterials, Phonon Transport, and Topological Phononics (Phononics 2019), Tucson, Arizona, USA, 2019 – *The Brillouin Medal Talk*
- Plenary Lecture, “Phonons in graphene and van der Waals materials” Materials Research Society (MRS) Fall Meeting, Boston, USA, 2013 – *The MRS Medal Talk*
- Keynote Conference Opening Talk, “Phononics in low-dimensional materials,” International CECAM Workshop Nanophononics, University of Bremen, Germany, 2013
- Keynote Lecture, “Phonon engineering: From nanowires and quantum dots to graphene and topological insulators,” ICREA Workshop on Phonon Engineering, St Feliu de Guixol, Barcelona, Spain, 2010
- Keynote Lecture, “Thermal conductivity of graphene and carbon materials,” International Workshop on Nanocarbon Photonics and Optoelectronics, North Karelia, Finland, 2010
- Plenary Lecture, “Nanoscale phonon engineering,” International Conference on Phonon Scattering in Condensed Matter Physics – The 11th PHONONS Conference, St. Petersburg, Russia, 2004
- Plenary Lecture, “Investigation of low-frequency noise in heterostructure field-effect transistors based on wide band gap semiconductors,” The 16th International Conference on Noise in Physical Systems and 1/f Fluctuations (ICNF), Gainesville, Florida, USA, 2001

RESEARCH IMPACT

- The phonon engineering approaches that I developed are incorporated in design of modern thermoelectric devices for increasing the efficiency of energy conversion; in electronic devices for enhancement of the electron mobility and improvement of heat removal; in photonic devices for tuning the light – matter interactions. All these advancements contribute to energy saving and improves renewable energy generation.
- Graphene thermal technologies have become the large-scale practical applications of graphene – one can now buy commercial thermal paste or epoxies with graphene fillers, or even sport jackets with graphene-enhanced textile for better heat spreading.
- Several methods of the electronic noise reduction that I developed are used in modern semiconductor electronic. The noise spectroscopy has become an established technique, which provides information about electronic properties of materials. Noise reduction is important for energy saving.
- The quasi-1D quantum materials are now considered for possible applications as interconnects and the multi-functional composites. Composites with quasi-1D materials demonstrated potential for electromagnetic interference (EMI) shielding, important for protecting humans from electromagnetic radiation, and improving quality of communications while reducing energy consumption.

CONTRIBUTIONS TO EQUITY, DIVERSITY AND INCLUSION

More than 1/3rd of my engineering PhD graduates are women (37 total graduates). Fifteen PhD graduates are members of the minority groups underrepresented in science and engineering. My research group is one of the most diverse in the science and engineering fields in the University of California.

REFERENCES

Professor Konstantin Novoselov (Nobel Prize Laureate, 2010)
University of Manchester
E-mail: kostya@manchester.ac.uk

Distinguished Professor Michael Shur
Rensselaer Polytechnic Institute
Email: shurm@rpi.edu

Papers – A list of 10 Important Publications

Chronological Order

- 1) A. Balandin and K. L. Wang, “Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well,” *Phys. Rev. B*, 58, 1544 (1998).
- 2) A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” *Nano Lett.*, 8, 902 (2008) – cited 13342 times.
- 3) S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, and A. A. Balandin, “Dimensional crossover of thermal transport in few-layer graphene,” *Nature Mater.*, 9, 555 (2010).
- 4) A. A. Balandin, “Thermal properties of graphene and nanostructured carbon materials,” *Nature Mater.*, 10, 569 (2011) – cited 5225 times.
- 5) K. M. F. Shahil and A. A. Balandin, “Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials,” *Nano Lett.*, 12, 861 (2012).
- 6) Z. Yan, G. Liu, J. M. Khan, and A. A. Balandin, “Graphene quilts for thermal management of high-power GaN transistors,” *Nature Com.*, 3, 827 (2012).
- 7) A. A. Balandin, “Low-frequency 1/f noise in graphene devices,” *Nature Nano*, 8, 549 (2013).
- 8) G. Liu, B. Debnath, T. R. Pope, T. T. Salguero, R. K. Lake, and A. A. Balandin, “A charge-density-wave oscillator based on an integrated tantalum disulfide–boron nitride–graphene device operating at room temperature,” *Nature Nano*, 11, 845 (2016).
- 9) M. A. Stolyarov, G. Liu, M. A. Bloodgood, E. Aytan, C. Jiang, R. Samnakay, T. T. Salguero, D. L. Nika, S. L. Rumyantsev, M. S. Shur, K. N. Bozhilov, and A. A. Balandin, “Breakdown current density in h-BN-capped quasi-1D TaSe₃ metallic nanowires: prospects of interconnect applications,” *Nanoscale*, 8, 15774 (2016).
- 10) Z. Barani, F. Kargar, Y. Ghafouri, S. Ghosh, K. Godziszewski, S. Baraghani, Y. Yashchyshyn, G. Cywiński, S. Rumyantsev, T. T. Salguero, and A. A. Balandin, “Electrically insulating flexible films with quasi-1D van der Waals fillers as efficient electromagnetic shields in the GHz and sub-THz frequency bands”, *Advanced Materials*, 33, 2007286 (2021).

Note: Professor Balandin is a corresponding author in all these papers.

Alexander Balandin

<https://publons.com/researcher/F-9230-2011/>

Web of Science ResearcherID: F-9230-2011

Current affiliation:

- University of California, Riverside until present

Highly cited researcher awards

From date range January 1993 - November 2021

- Cross-Field 2021
- Physics 2017
- Cross-Field 2020
- Physics 2016

- Cross-Field 2019
- Physics 2018
- Physics 2015

Publications

MANUSCRIPTS PUBLISHED (314)

From date range January 1993 - November 2021

**TIMES CITED
(ALL TIME)**

Charge-density-wave quantum materials and devices—New developments and future prospects

Published: Oct 2021 in Applied Physics Letters

DOI: 10.1063/5.0074613

Low-Frequency Electronic Noise in Quasi-2D van der Waals Antiferromagnetic Semiconductor FePS₃-Signatures of Phase Transitions

Published: Sep 2021 in Advanced Electronic Materials

DOI: 10.1002/AELM.202100408

Noncured Graphene Thermal Interface Materials for High-Power Electronics: Minimizing the Thermal Contact Resistance

Published: Jun 2021 in Nanomaterials

DOI: 10.3390/NANO11071699

Room temperature depinning of the charge-density waves in quasi-two-dimensional 1T-TaS₂ devices

Published: May 2021 in Applied Physics Letters
DOI: 10.1063/5.0055401

Thermal interface materials with graphene fillers: review of the state of the art and outlook for future applications

Published: Apr 2021 in Nanotechnology
DOI: 10.1088/1361-6528/ABC0C6

Evidence for a thermally driven charge-density-wave transition in 1T-TaS₂ thin-film devices: Prospects for GHz switching speed

Published: Mar 2021 in Applied Physics Letters
DOI: 10.1063/5.0044459

Electrically Insulating Flexible Films with Quasi-1D van der Waals Fillers as Efficient Electromagnetic Shields in the GHz and Sub-THz Frequency Bands

Published: Mar 2021 in Advanced Materials
DOI: 10.1002/ADMA.202007286

Interaction Between a Low-Temperature Plasma and Graphene: An in situ Raman

Published: Feb 2021 in Physical Review Applied
DOI: 10.1103/PHYSREVAPPLIED.15.024018

Strain-Controlled Superconductivity in Few-Layer NbSe₂

Published: Aug 2020 in ACS Applied Materials & Interfaces
DOI: 10.1021/ACSAMI.0C08804

Phononic and photonic properties of shape-engineered silicon nanoscale pillar arrays

Published: Jul 2020 in Nanotechnology
DOI: 10.1088/1361-6528/AB85EE

Graphene Epoxy-Based Composites as Efficient Electromagnetic Absorbers in the Extremely High-Frequency Band

Published: Jun 2020 in ACS Applied Materials & Interfaces
DOI: 10.1021/ACSAMI.0C06729

Power Cycling and Reliability Testing of Epoxy-Based Graphene Thermal Interface Materials

Published: Jun 2020 in C - Journal of Carbon Research
DOI: 10.3390/C6020026

Phonics of Graphene and Related Materials

Published: May 2020 in ACS Nano
DOI: 10.1021/ACSNANO.0C02718

Brillouin-Mandelstam spectroscopy of stress-modulated spatially confined spin waves in Ni thin films on piezoelectric substrates

Published: May 2020 in Journal of Magnetism and Magnetic Materials

DOI: 10.1016/J.JMMM.2020.166440

High-frequency current oscillations in charge-density-wave 1T-TaS₂ devices: Revisiting the "narrow band noise" concept

Published: Apr 2020 in Applied Physics Letters

DOI: 10.1063/5.0007043

Phonon and Thermal Properties of Quasi-Two-Dimensional FePS₃ and MnPS₃ Antiferromagnetic Semiconductors

Published: Feb 2020 in ACS Nano

DOI: 10.1021/ACSNANO.9B09839

Noncuring Graphene Thermal Interface Materials for Advanced Electronics

Published: Feb 2020 in Advanced Electronic Materials

DOI: 10.1002/AELM.201901303

Coexistence of Magnetic Orders in Two-Dimensional Magnet CrI₃

Published: Jan 2020 in Nano Letters

DOI: 10.1021/ACS.NANO lett.9B04282

Graphene related materials for thermal management

Published: 2020 in 2D Materials

DOI: 10.1088/2053-1583/AB48D9

Multifunctional Graphene Composites for Electromagnetic Shielding and Thermal Management at Elevated Temperatures

Published: 2020 in Advanced Electronic Materials

DOI: 10.1002/AELM.202000520

Thermal Properties of the Binary-Filler Hybrid Composites with Graphene and Copper Nanoparticles

Published: 2020 in Advanced Functional Materials

DOI: 10.1002/ADFM.201904008

Non-Curing Thermal Interface Materials with Graphene Fillers for Thermal Management of Concentrated Photovoltaic Solar Cells

Published: 2020 in C - Journal of Carbon Research

DOI: 10.3390/C6010002

Low-frequency electronic noise in superlattice and random-packed thin films of colloidal quantum dots

Published: Nov 2019 in Nanoscale

DOI: 10.1039/C9NR06899F

Strong Hot Carrier Effects in Single Nanowire Heterostructures

Published: Aug 2019 in Nano Letters

DOI: 10.1021/ACS.NANO lett.9B01345

Ultrastiff, Strong, and Highly Thermally Conductive Crystalline Graphitic Films with Mixed Stacking Order

Published: Jul 2019 in Advanced Materials

DOI: 10.1002/ADMA.201903039

Thermal and electrical conductivity control in hybrid composites with graphene and boron nitride fillers

Published: May 2019 in Materials Research Express

DOI: 10.1088/2053-1591/AB2215

Proton-irradiation-immune electronics implemented with two-dimensional charge-density-wave devices

Published: Apr 2019 in Nanoscale

DOI: 10.1039/C9NR01614G

Low-frequency noise spectroscopy of charge-density-wave phase transitions in vertical quasi-2D 1T-TaS₂ devices

Published: 2019 in Applied Physics Express

DOI: 10.7567/1882-0786/AB0397

Low Resistivity and High Breakdown Current Density of 10 nm Diameter van der Waals TaSe₃ Nanowires by Chemical Vapor Deposition

Published: 2019 in Nano Letters

DOI: 10.1021/ACS.NANO.9B00958

Bias-Voltage Driven Switching of the Charge-Density-Wave and Normal Metallic Phases in 1T-TaS₂ Thin-Film Devices

Published: 2019 in ACS Nano

DOI: 10.1021/ACSNANO.9B02870

Dual-Functional Graphene Composites for Electromagnetic Shielding and Thermal Management

Published: 2019 in Advanced Electronic Materials

DOI: 10.1002/AELM.201800558

The discrete noise of magnons

Published: 2019 in Applied Physics Letters

DOI: 10.1063/1.5088651

Thermal Percolation Threshold and Thermal Properties of Composites with High Loading of Graphene and Boron Nitride Fillers

Published: Oct 2018 in ACS Applied Materials & Interfaces

DOI: 10.1021/ACSAMI.8B16616

Plasmonic Core-Shell Zirconium Nitride-Silicon Oxynitride Nanoparticles

Published: Oct 2018 in ACS Energy Letters

DOI: 10.1021/ACSENERGYLETT.8B01478

Transister-Less Logic Circuits Implemented With 2-D Charge Density Wave Devices

Published: Sep 2018 in IEEE Electron Device Letters

DOI: 10.1109/LED.2018.2858244

Unique Features of Electron Transport and Low-Frequency Noise in Quasi-One-Dimensional ZrTe₃ van der Waals Nanoribbons

Published: Jun 2018 in 72ND ANNUAL DEVICE RESEARCH CONFERENCE (DRC)

DOI: 10.1109/DRC.2018.8442263

Acoustic phonon spectrum engineering in bulk crystals via incorporation of dopant atoms

Published: May 2018 in Applied Physics Letters

DOI: 10.1063/1.5030558

Effects of the magnetic field variation on the spin wave interference in a magnetic cross junction

Published: May 2018 in AIP Advances

DOI: 10.1063/1.5007164

Brillouin-Mandelstam spectroscopy of standing spin waves in a ferrite waveguide

Published: May 2018 in AIP Advances

DOI: 10.1063/1.5007165

Design of lithium cobalt oxide electrodes with high thermal conductivity and electrochemical performance using carbon nanotubes and diamond particles

Published: Apr 2018 in Carbon

DOI: 10.1016/J.CARBON.2017.12.061

Monoclinic structures of niobium trisulfide

Published: Feb 2018 in APL Materials

DOI: 10.1063/1.5005813

Raman-based technique for measuring thermal conductivity of graphene and related materials

Published: Jan 2018 in Journal of Raman Spectroscopy

DOI: 10.1002/JRS.5230

High-Vacuum Particulate-Free Deposition of Wafer-Scale Mono-, Bi-, and Trilayer Molybdenum Disulfide with Superior Transport Properties

Published: 2018 in ACS Applied Materials & Interfaces

DOI: 10.1021/ACSAMI.8B10857

Low-Frequency Current Fluctuations and Sliding of the Charge Density Waves in Two-Dimensional Materials

Published: 2018 in Nano Letters

DOI: 10.1021/ACS.NANOLETT.8B00729

Unique features of the generation-recombination noise in quasi-one-dimensional van der Waals nanoribbons

Published: 2018 in *Nanoscale*

DOI: 10.1039/C8NR06984K

Current Carrying Capacity of Quasi-1D ZrTe3 Van Der Waals Nanoribbons

Published: 2018 in *IEEE Electron Device Letters*

DOI: 10.1109/LED.2018.2820140

Spin-phonon coupling in antiferromagnetic nickel oxide

Published: Dec 2017 in *Applied Physics Letters*

DOI: 10.1063/1.5009598

Total-Ionizing-Dose Effects on Threshold Switching in 1T-TaS2 Charge Density Wave Devices

Published: Dec 2017 in *IEEE Electron Device Letters*

DOI: 10.1109/LED.2017.2763597

Raman spectra of twisted CVD bilayer graphene

Published: Oct 2017 in *Carbon*

DOI: 10.1016/J.CARBON.2017.07.064

A Magnetometer Based on a Spin Wave Interferometer

Published: Sep 2017 in *Scientific Reports*

DOI: 10.1038/S41598-017-11881-Y

Two-Dimensional Oscillatory Neural Network Based on Room-Temperature Charge-Density-Wave Devices

Published: Sep 2017 in *IEEE Transactions on Nanotechnology*

DOI: 10.1109/TNANO.2017.2716845

Magnetic and thermal transport properties of SrFe12O19 permanent magnets with anisotropic grain structure

Published: Jul 2017 in *Materials & Design*

DOI: 10.1016/J.MATDES.2017.03.082

Low-frequency noise in quasi-1D TaSe3 van der Waals nanowires

Published: Jun 2017 in *International Conference on Noise and Fluctuations (ICNF)*

DOI: 10.1109/ICNF.2017.7986013

Low frequency noise in 2D materials: Graphene and MoS2

Published: Jun 2017 in *International Conference on Noise and Fluctuations (ICNF)*

DOI: 10.1109/ICNF.2017.7985949

Thermal Management of Concentrated Multi-Junction Solar Cells with Graphene-Enhanced Thermal Interface Materials

Published: Jun 2017 in *Applied Sciences*

DOI: 10.3390/APP7060589

Variable-temperature inelastic light scattering spectroscopy of nickel oxide: Disentangling phonons and magnons

Published: May 2017 in Applied Physics Letters

DOI: 10.1063/1.4983810

Magnonic holographic imaging of magnetic microstructures

Published: Apr 2017 in Journal of Magnetism and Magnetic Materials

DOI: 10.1016/J.JMMM.2016.12.022

Thermal and magnetic properties of nanostructured densified ferrimagnetic composites with graphene - graphite fillers

Published: Mar 2017 in Materials & Design

DOI: 10.1016/J.MATDES.2017.01.018

Phonons and thermal transport in graphene and graphene-based materials

Published: Mar 2017 in Reports on Progress in Physics

DOI: 10.1088/1361-6633/80/3/036502

Magnonic interferometric switch for multi-valued logic circuits

Published: Jan 2017 in Journal of Applied Physics

DOI: 10.1063/1.4973115

Low-Frequency Electronic Noise in Quasi-1D TaSe₃ van der Waals Nanowires

Published: 2017 in Nano Letters

DOI: 10.1021/ACS.NANO lett.6B04334

Reliability characterization of SiON and MGHK MOSFETs using flicker noise and its correlation with the bias temperature instability

Published: 2017 in Solid-State Electronics

DOI: 10.1016/J.SSSE.2017.06.003

Two-Dimensional Thermal Transport in Graphene

Published: 2017 in Thermal Transport in Carbon-based Nanomaterials

DOI: 10.1016/B978-0-32-346240-2.00003-0

Low-Frequency Noise in Quasi-1D TaSe₃ van der Waals Nanowires

Published: 2017 in International Conference on Noise and Fluctuations (ICNF)

Thermal Properties of Graphene: From Physics to Applications

Published: 2017 in 2D MATERIALS: PROPERTIES AND DEVICES

Low frequency noise in 2D materials: graphene and MoS₂

Published: 2017 in International Conference on Noise and Fluctuations (ICNF)

Direct observation of confined acoustic phonon polarization branches in free-standing semiconductor nanowires

Published: Nov 2016 in Nature Communications

DOI: 10.1038/NCOMMS13400

A charge-density-wave oscillator based on an integrated tantalum disulfide-boron nitride-graphene device operating at room temperature

Published: Oct 2016 in *Nature Nanotechnology*

DOI: 10.1038/NNANO.2016.108

Grain-to-Grain Compositional Variations and Phase Segregation in Copper-Zinc-Tin-Sulfide Films

Published: Sep 2016 in *ACS Applied Materials & Interfaces*

DOI: 10.1021/ACSAM.6B04982

Breakdown current density in h-BN-capped quasi-1D TaSe₃ metallic nanowires: prospects of interconnect applications

Published: Aug 2016 in *Nanoscale*

DOI: 10.1039/C6NR03469A

Thermal conductivity of graphene with defects induced by electron beam irradiation

Published: Aug 2016 in *Nanoscale*

DOI: 10.1039/C6NR03470E

Metal-induced rapid transformation of diamond into single and multilayer graphene on wafer scale

Published: Jul 2016 in *Nature Communications*

DOI: 10.1038/NCOMMS12099

The influence of chemical reactivity of surface defects on ambient-stable InSe-based nanodevices

Published: Apr 2016 in *Nanoscale*

DOI: 10.1039/C6NR01262K

Graphene-Enhanced Thermal Interface Materials for Heat Removal from Photovoltaic Solar Cells

Published: 2016 in *Proceedings of SPIE - The International Society for Optical Engineering*

DOI: 10.1117/12.2238327

Thermal Conductivity of Segmented Nanowires

Published: 2016 in *NanoScience and Technology*

DOI: 10.1007/978-3-319-30198-3_16

Thermal Transport in Graphene, Few-Layer Graphene and Graphene Nanoribbons

Published: 2016 in *Lecture Notes in Physics*

DOI: 10.1007/978-3-319-29261-8_9

Carbon Nanotube - Nanodiamond Li-Ion Battery Cathodes with Increased Thermal Conductivity

Published: 2016 in *Proceedings of SPIE - The International Society for Optical Engineering*

DOI: 10.1117/12.2238345

Magnetically-functionalized self-aligning graphene fillers for high-efficiency thermal management applications

Published: Dec 2015 in Materials & Design

DOI: 10.1016/J.MATDES.2015.08.135

Phonon Spectrum Engineering in Rolled-up Micro- and Nano-Architectures

Published: Dec 2015 in Applied Sciences

DOI: 10.3390/APP5040728

Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays

Published: Oct 2015 in Applied Physics Letters

DOI: 10.1063/1.4934883

Engineering of the thermodynamic properties of bilayer graphene by atomic plane rotations: the role of the out-of-plane phonons

Published: Aug 2015 in Nanoscale

DOI: 10.1039/C5NR03579A

Strongly Anisotropic Thermal Conductivity of Free-Standing Reduced Graphene Oxide Films Annealed at High Temperature

Published: Aug 2015 in Advanced Functional Materials

DOI: 10.1002/ADFM.201501429

Reduced 1/f Noise in High-Mobility BN-Graphene-BN Heterostructure Transistors

Published: Jun 2015 in Annual Device Research Conference (DRC)

DOI: 10.1109/DRC.2015.7175601

Zone-Folded Phonons and the Commensurate-Incommensurate Charge-Density-Wave Transition in 1T-TaSe₂ Thin Films

Published: May 2015 in Nano Letters

DOI: 10.1021/NL504811S

Thermal properties of graphene and few-layer graphene: applications in electronics

Published: Jan 2015 in IET Circuits, Devices and Systems

DOI: 10.1049/IET-CDS.2014.0093

Brillouin-Mandelstam Light Scattering Spectroscopy of the Nanoscale Phononic Superlattice Arrays

Published: 2015 in Nonlinear Optics, NLO

DOI: 10.1364/NLO.2015.NTH3A.4

High-temperature performance of MoS₂ thin-film transistors: Direct current and pulse current-voltage characteristics

Published: 2015 in Journal of Applied Physics

DOI: 10.1063/1.4906496

Selective chemical vapor sensing with few-layer MoS₂ thin-film transistors: Comparison with graphene devices

Published: 2015 in Applied Physics Letters

DOI: 10.1063/1.4905694

1/ f Noise Characteristics of MoS₂ Thin-Film Transistors: Comparison of Single and Multilayer Structures

Published: 2015 in IEEE Electron Device Letters

DOI: 10.1109/LED.2015.2412536

Selective Gas Sensing With h-BN Capped MoS₂ Heterostructure Thin-Film Transistors

Published: 2015 in IEEE Electron Device Letters

DOI: 10.1109/LED.2015.2481388

Graphene heat spreaders and interconnects for advanced electronic applications

Published: 2015 in ECS Transactions

DOI: 10.1149/06701.0167ECST

Suppression of 1/f noise in near-ballistic h-BN-graphene-h-BN heterostructure field-effect transistors

Published: 2015 in Applied Physics Letters

DOI: 10.1063/1.4926872

Graphene Thermal Properties: Applications in Thermal Management and Energy Storage

Published: Dec 2014 in Applied Sciences

DOI: 10.3390/APP4040525

Thermal conductivity of twisted bilayer graphene

Published: Nov 2014 in Nanoscale

DOI: 10.1039/C4NR04455J

Selective gas sensing with MoS₂ thin film transistors

Published: Nov 2014 in IEEE Sensors Conference

DOI: 10.1109/ICSENS.2014.6984931

A comparative study of the thermal interface materials with graphene and boron nitride fillers

Published: Sep 2014 in Proceedings of SPIE - The International Society for Optical Engineering

DOI: 10.1117/12.2070704

Thermal Conductivity of Graphene Laminate

Published: Sep 2014 in Nano Letters

DOI: 10.1021/NL501996V

Phonon engineering in graphene and van der Waals materials

Published: Sep 2014 in MRS Bulletin

DOI: 10.1557/MRS.2014.169

Toward Lithium Ion Batteries with Enhanced Thermal Conductivity

Published: Jul 2014 in ACS Nano

DOI: 10.1021/NN502212B

Specific heat of twisted bilayer graphene: Engineering phonons by atomic plane rotations

Published: Jul 2014 in Applied Physics Letters

DOI: 10.1063/1.4890622

Thermal Properties of Graphene-Copper-Graphene Heterogeneous Films

Published: Mar 2014 in Nano Letters

DOI: 10.1021/NL404719N

Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries

Published: Feb 2014 in Journal of Power Sources

DOI: 10.1016/J.JPOWSOUR.2013.08.135

All-metallic electrically gated 2H-TaSe₂ thin-film switches and logic circuits

Published: Jan 2014 in Journal of Applied Physics

DOI: 10.1063/1.4862336

Graphene-Enhanced Phase Change Materials for Thermal Management of Battery Packs

Published: 2014 in 13TH IEEE INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL

PHENOMENA IN ELECTRONIC SYSTEMS (ITHERM)

Low-frequency 1/f noise in MoS₂ transistors: Relative contributions of the channel and contacts

Published: 2014 in Applied Physics Letters

DOI: 10.1063/1.4871374

Selective Gas Sensing with MoS₂ Thin Film Transistors

Published: 2014 in IEEE Sensors Conference

Phonon and thermal properties of exfoliated TaSe₂ thin films

Published: Nov 2013 in Journal of Applied Physics

DOI: 10.1063/1.4833250

Plasmonic and Bolometric Terahertz Graphene Sensors

Published: Nov 2013 in IEEE Sensors Conference

DOI: 10.1109/ICSENS.2013.6688554

Graphene-based non-Boolean logic circuits

Published: Oct 2013 in Journal of Rheology

DOI: 10.1063/1.4824828

Two-dimensional ion temperature measurement by application of tomographic reconstruction to Doppler spectroscopy

Published: Sep 2013 in Nuclear Fusion

DOI: 10.1088/0029-5515/53/9/093027

Low-frequency 1/f noise in graphene devices

Published: Aug 2013 in *Nature Nanotechnology*

DOI: 10.1038/NNANO.2013.144

Phonons in twisted bilayer graphene

Published: Jul 2013 in *Physical Review B*

DOI: 10.1103/PHYSREVB.88.035428

Variability Effects in Graphene: Challenges and Opportunities for Device Engineering and Applications

Published: Jul 2013 in *Proceedings of the IEEE*

DOI: 10.1109/JPROC.2013.2247971

Effects of Functionalization on Thermal Properties of Single-Wall and Multi-Wall Carbon Nanotube-Polymer Nanocomposites

Published: Jun 2013 in *ACS Nano*

DOI: 10.1021/NN400726G

Surface and volume 1/f noise in multi-layer graphene

Published: Jun 2013 in *International Conference on Noise and Fluctuations (ICNF)*

DOI: 10.1109/ICNF.2013.6578991

Thermal conductivity inhibition in phonon engineered core-shell cross-section modulated Si/Ge nanowires

Published: May 2013 in *Applied Physics Letters*

DOI: 10.1063/1.4807389

Reduction of 1/f noise in graphene after electron-beam irradiation

Published: 2013 in *Applied Physics Letters*

DOI: 10.1063/1.4802759

Surface and Volume 1/fNoise in Multi-Layer Graphene

Published: 2013 in *International Conference on Noise and Fluctuations (ICNF)*

Selective Sensing of Individual Gases Using Graphene Devices

Published: 2013 in *IEEE Sensors Journal*

DOI: 10.1109/JSEN.2013.2251627

Origin of 1/f noise in graphene multilayers: Surface vs. volume

Published: 2013 in *Applied Physics Letters*

DOI: 10.1063/1.4794843

Plasmonic and bolometric terahertz detection by graphene field-effect transistor

Published: 2013 in *Applied Physics Letters*

DOI: 10.1063/1.4826139

The effect of a transverse magnetic field on 1/f noise in graphene

Published: 2013 in *Applied Physics Letters*

DOI: 10.1063/1.4826644

Charge Density Waves in Exfoliated Films of van der Waals Materials: Evolution of Raman Spectrum in TiSe₂

Published: Nov 2012 in *Nano Letters*

DOI: 10.1021/NL303365X

Selective Gas Sensing by Graphene

Published: Oct 2012 in *IEEE Sensors Conference*

DOI: 10.1109/ICSENS.2012.6411434

Epitaxial Graphene Nanoribbon Array Fabrication Using BCP-Assisted Nanolithography

Published: Aug 2012 in *ACS Nano*

DOI: 10.1021/NN301515A

Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials

Published: Aug 2012 in *Solid State Communications*

DOI: 10.1016/J.SSC.2012.04.034

Anomalous Size Dependence of the Thermal Conductivity of Graphene Ribbons

Published: Jun 2012 in *Nano Letters*

DOI: 10.1021/NL301230G

Two-dimensional phonon transport in graphene

Published: Jun 2012 in *Journal of Physics: Condensed Matter*

DOI: 10.1088/0953-8984/24/23/233203

Selective gas sensing with a single graphene-on-silicon transistor

Published: Jun 2012 in *IEEE Silicon Nanoelectronics Workshop (SNW)*

DOI: 10.1109/SNW.2012.6243283

Phononics in low-dimensional materials

Published: Jun 2012 in *Materials Today*

DOI: 10.1016/S1369-7021(12)70117-7

Suppression of phonon heat conduction in cross-section-modulated nanowires

Published: May 2012 in *Physical Review B*

DOI: 10.1103/PHYSREVB.85.205439

Graphene quilts for thermal management of high-power GaN transistors

Published: May 2012 in *Nature Communications*

DOI: 10.1038/NCOMMS1828

Direct Low-Temperature Integration of Nanocrystalline Diamond with GaN Substrates for Improved Thermal Management of High-Power Electronics

Published: Apr 2012 in *Advanced Functional Materials*

DOI: 10.1002/ADFM.201102786

Graphene-on-Diamond Devices with Increased Current-Carrying Capacity: Carbon sp(2)-on-sp(3) Technology

Published: Mar 2012 in Nano Letters

DOI: 10.1021/NL204545Q

Micro-Raman spectroscopy of mechanically exfoliated few-quintuple layers of Bi₂Te₃, Bi₂Se₃, and Sb₂Te₃ materials

Published: Mar 2012 in Journal of Applied Physics

DOI: 10.1063/1.3690913

Thermal conductivity of isotopically modified graphene

Published: Mar 2012 in Nature Materials

DOI: 10.1038/NMAT3207

Thermal properties of the hybrid graphene-metal nano-micro-composites: Applications in thermal interface materials

Published: Feb 2012 in Applied Physics Letters

DOI: 10.1063/1.3687173

Graphene-Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials

Published: Feb 2012 in Nano Letters

DOI: 10.1021/NL203906R

Towards Ultrathick Battery Electrodes: Aligned Carbon Nanotube - Enabled Architecture

Published: Jan 2012 in Advanced Materials

DOI: 10.1002/ADMA.201103044

Anomalous electron transport in back-gated field-effect transistors with TiTe₂ semimetal thin-film channels

Published: Jan 2012 in Applied Physics Letters

DOI: 10.1063/1.3679679

Graphene fillers for ultra-efficient thermal interface materials

Published: 2012 in IEEE Silicon Nanoelectronics Workshop, SNW

DOI: 10.1109/SNW.2012.6243284

Large-area industrial-scale identification and quality control of graphene

Published: 2012 in Materials Research Society Symposium Proceedings

DOI: 10.1557/OPL.2011.1365

Top-gate graphene-on-UNCD transistors with enhanced performance

Published: 2012 in Materials Research Society Symposium Proceedings

DOI: 10.1557/OPL.2011.1350

Reversible tuning of the electronic properties of graphene via controlled exposure to electron beam irradiation and annealing

Published: 2012 in Materials Research Society Symposium Proceedings

DOI: 10.1557/OPL.2011.1354

DNA gating effect from single layer graphene

Published: 2012 in Materials Research Society Symposium Proceedings

DOI: 10.1557/OPL.2011.1353

Graphene-diamond-silicon devices with increased current-carrying capacity: sp₂-carbon-sp₃-carbon-on-silicon technology

Published: 2012 in IEEE Silicon Nanoelectronics Workshop, SNW

DOI: 10.1109/SNW.2012.6243282

Experimental demonstration of thermal management of high-power GaN transistors with graphene lateral heat spreaders

Published: 2012 in Materials Research Society Symposium Proceedings

DOI: 10.1557/OPL.2011.1348

Thermal properties of graphene and carbon based materials: Prospects of thermal management applications

Published: 2012 in Materials Research Society Symposium Proceedings

DOI: 10.1557/OPL.2011.1369

Pseudo-superlattices of Bi₂Te₃ topological insulator films with enhanced thermoelectric performance

Published: 2012 in Materials Research Society Symposium Proceedings

DOI: 10.1557/OPL.2011.1361

"Graphene-like" exfoliation of quasi-2D crystals of titanium ditelluride: A new route to charge density wave materials

Published: 2012 in Materials Research Society Symposium Proceedings

DOI: 10.1557/OPL.2011.1359

Selective Gas Sensing with a Single Pristine Graphene Transistor

Published: 2012 in Nano Letters

DOI: 10.1021/NL3001293

Graphene thickness-graded transistors with reduced electronic noise

Published: 2012 in Applied Physics Letters

DOI: 10.1063/1.3676277

Ambipolar circuits for analog, mixed-signal, and radio-frequency applications

Published: 2012 in PROCEEDINGS OF THE IEEE/ACM INTERNATIONAL SYMPOSIUM ON NANOSCALE ARCHITECTURES (NANOARCH 15)

Graphene-Like Exfoliated Quasi-2D Thermoelectric Crystals

Published: 2012 in Materials, Preparation, and Characterization in Thermoelectrics

The Heat Is On: Graphene Applications

Published: Dec 2011 in IEEE Nanotechnology Magazine

DOI: 10.1109/MNANO.2011.943327

Theoretical description of thermal transport in graphene: The issues of phonon cut-off frequencies and polarization branches

Published: Nov 2011 in *Physica Status Solidi (B)*

DOI: 10.1002/PSSB.201100186

Reduction of lattice thermal conductivity in one-dimensional quantum-dot superlattices due to phonon filtering

Published: Oct 2011 in *Physical Review B*

DOI: 10.1103/PHYSREVB.84.165415

Graphene Ambipolar Multiplier Phase Detector

Published: Oct 2011 in *IEEE Electron Device Letters*

DOI: 10.1109/LED.2011.2162576

Growth of graphene and graphite nanocrystals from a molten phase

Published: Oct 2011 in *Journal of Materials Science*

DOI: 10.1007/S10853-011-5432-9

Low-Frequency Noise in “Graphene-Like” Exfoliated Thin Films of Topological Insulators

Published: Aug 2011 in *Materials Research Society Symposium - Proceedings*

DOI: 10.1557/OPL.2011.1349

1/ f Noise in Graphene Field-Effect Transistors: Dependence on the Device Channel Area

Published: Aug 2011 in *Materials Research Society Symposium - Proceedings*

DOI: 10.1557/OPL.2011.1357

Thermal properties of graphene and nanostructured carbon materials

Published: Aug 2011 in *Nature Materials*

DOI: 10.1038/NMAT3064

Tuning of Graphene Properties via Controlled Exposure to Electron Beams

Published: Jul 2011 in *IEEE Transactions on Nanotechnology*

DOI: 10.1109/TNANO.2010.2087391

Low-Frequency 1/f Noise in Bismuth Selenide Topological Insulators

Published: Jun 2011 in *International Conference on Noise and Fluctuations (ICNF)*

DOI: 10.1109/ICNF.2011.5994374

Low-frequency noise in graphene field-effect transistors

Published: Jun 2011 in *International Conference on Noise and Fluctuations (ICNF)*

DOI: 10.1109/ICNF.2011.5994311

Electrical and Noise Characteristics of Graphene Field-Effect Transistors

Published: Jun 2011 in *International Conference on Noise and Fluctuations (ICNF)*

DOI: 10.1109/ICNF.2011.5994285

Graphene nanoribbon crossbar nanomesh

Published: Jun 2011 in *IEEE/ACM International Symposium on Nanoscale Architectures*

DOI: 10.1109/NANOARCH.2011.5941488

A comparative analysis of Ag and Cu heat sink layers in L1(0)-FePt films for heat-assisted magnetic recording

Published: Apr 2011 in Journal of Applied Physics

DOI: 10.1063/1.3564968

Heat Conduction Properties of Graphene: Prospects of Thermal Management Applications

Published: Mar 2011 in Annual IEEE Semiconductor Thermal Measurement and Management Symposium

DOI: 10.1109/STHERM.2011.5767183

LOW-FREQUENCY ELECTRONIC NOISE IN GRAPHENE TRANSISTORS: COMPARISON WITH CARBON NANOTUBES

Published: Mar 2011 in International Journal of High Speed Electronics and Systems

DOI: 10.1142/S0129156411006490

High-Throughput Large-Area Automated Identification and Quality Control of Graphene and Few-Layer Graphene Films

Published: Feb 2011 in ACS Nano

DOI: 10.1021/NN102107B

Observation of the memory steps in graphene at elevated temperatures

Published: 2011 in Applied Physics Letters

DOI: 10.1063/1.3596441

Thermal Properties of Graphene: Applications in Thermal Interface Materials

Published: 2011 in ECS Transactions

DOI: 10.1149/1.3569911

Excellent thermal properties of graphene and prospects of graphene's applications in thermal management

Published: 2011 in Advancing Microelectronics

In-plane and cross-plane thermal conductivity of graphene: Applications in thermal interface materials

Published: 2011 in Proceedings of SPIE - The International Society for Optical Engineering

DOI: 10.1117/12.894455

1/f noise in conducting channels of topological insulator materials

Published: 2011 in Physica Status Solidi (a)

DOI: 10.1002/PSSA.201026604

Graphene-based thermal interface materials

Published: 2011 in Proceedings of the IEEE Conference on Nanotechnology

DOI: 10.1109/NANO.2011.6144476

Fabrication and characterization of high-performance graphene-on-diamond devices

Published: 2011 in Proceedings of the IEEE Conference on Nanotechnology

DOI: 10.1109/NANO.2011.6144589

Low-Frequency Current Fluctuations in "Graphene-like" Exfoliated Thin-Films of Bismuth Selenide Topological Insulators

Published: 2011 in ACS Nano

DOI: 10.1021/NN102861D

"Graphene-Like" Exfoliation and Characterization of the Atomically-Thin Films of Titanium Ditelluride

Published: 2011 in ECS Transactions

DOI: 10.1149/1.3569913

Growth of large-area graphene films from metal-carbon melts

Published: Nov 2010 in Journal of Applied Physics

DOI: 10.1063/1.3498815

Triple-Mode Single-Transistor Graphene Amplifier and Its Applications

Published: Oct 2010 in ACS Nano

DOI: 10.1021/NN1021583

Thermal Conduction in Suspended Graphene Layers

Published: Oct 2010 in Fullerenes, Nanotubes and Carbon Nanostructures

DOI: 10.1080/1536383X.2010.487785

Mechanically-exfoliated stacks of thin films of Bi₂Te₃ topological insulators with enhanced thermoelectric performance

Published: Sep 2010 in Applied Physics Letters

DOI: 10.1063/1.3494529

Reduced thermal resistance of the silicon-synthetic diamond composite substrates at elevated temperatures

Published: Jul 2010 in Applied Physics Letters

DOI: 10.1063/1.3463455

Dimensional crossover of thermal transport in few-layer graphene

Published: Jul 2010 in Nature Materials

DOI: 10.1038/NMAT2753

INVESTIGATION AND MODELING OF SPACE RADIATION EFFECTS IN QUANTUM DOT SOLAR CELLS

Published: Jun 2010 in IEEE Photovoltaic Specialists Conference

DOI: 10.1109/PVSC.2010.5614621

THERMAL MANAGEMENT WITH GRAPHENE LATERAL HEAT SPREADERS: A FEASIBILITY STUDY

Published: Jun 2010 in 11TH IEEE INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONIC SYSTEMS, VOLS 1-3

DOI: 10.1109/ITHERM.2010.5501372

EXTRAORDINARY THERMAL CONDUCTIVITY OF GRAPHENE: POSSIBILITY OF THERMAL MANAGEMENT APPLICATIONS

Published: Jun 2010 in 11TH IEEE INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL

PHENOMENA IN ELECTRONIC SYSTEMS, VOLS 1-3

DOI: 10.1109/ITHERM.2010.5501371

THERMAL CONDUCTION THROUGH DIAMOND - SILICON HETEROSTRUCTURES

Published: Jun 2010 in 11TH IEEE INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL

PHENOMENA IN ELECTRONIC SYSTEMS, VOLS 1-3

DOI: 10.1109/ITHERM.2010.5501369

Gating of Single-Layer Graphene with Single-Stranded Deoxyribonucleic Acids

Published: May 2010 in Small

DOI: 10.1002/SMLL.200902379

Exfoliation and Characterization of Bismuth Telluride Atomic Quintuples and Quasi-Two-Dimensional Crystals

Published: Apr 2010 in Nano Letters

DOI: 10.1021/NL903590B

Crystal symmetry breaking in few-quintuple Bi₂Te₃ films: Applications in nanometrology of topological insulators

Published: Apr 2010 in Applied Physics Letters

DOI: 10.1063/1.3396190

Electric field effect on thermoelectric properties of bismuth telluride square nanowires

Published: Apr 2010 in Journal of Optoelectronics and Advanced Materials

Thermoelectric properties of electrically gated bismuth telluride nanowires

Published: Feb 2010 in Physical Review B

DOI: 10.1103/PHYSREVB.81.075316

Atomically-thin crystalline films and ribbons of bismuth telluride

Published: Feb 2010 in Applied Physics Letters

DOI: 10.1063/1.3280078

Large-Scale Automated Identification and Quality Control of Exfoliated and CVD Graphene via Image Processing Technique

Published: 2010 in ECS Transactions

DOI: 10.1149/1.3485619

LOW-FREQUENCY ELECTRONIC NOISE IN THE BACK-GATED AND TOP-GATED GRAPHENE DEVICES

Published: 2010 in Nanotechnological Basis for Advanced Sensors

DOI: 10.1007/978-90-481-3807-4_16

Thermal Conductivity of Graphene: The First Measurements and Theoretical Analysis

Published: 2010 in THERMAL CONDUCTIVITY 29: THERMAL EXPANSION 17

EXTRAORDINARY THERMAL CONDUCTIVITY OF GRAPHENE: PROSPECTS OF THERMAL MANAGEMENT APPLICATIONS

Published: 2010 in PROCEEDINGS OF THE ASME INTERNATIONAL HEAT TRANSFER CONFERENCE - , VOL 6
DOI: 10.1115/IHTC14-22348

Extraordinary Thermal Conductivity of Graphene: Possible Applications in Thermal Management

Published: 2010 in ECS Transactions
DOI: 10.1149/1.3367937

"Graphene-Like" Exfoliation of Atomically-Thin Films of Bi₂Te₃ and Related Materials: Applications in Thermoelectrics and Topological Insulators

Published: 2010 in ECS Transactions
DOI: 10.1149/1.3485611

Properties of Quasi-Two-Dimensional Crystals of Titanium Ditelluride

Published: 2010 in ECS Transactions
DOI: 10.1149/1.3485620

Electrical and noise characteristics of graphene field-effect transistors: ambient effects, noise sources and physical mechanisms

Published: 2010 in Journal of Physics: Condensed Matter
DOI: 10.1088/0953-8984/22/39/395302

An optical technique for the large-scale graphene recognition and quality control

Published: 2010 in Optics InfoBase Conference Papers

Response to "Comment on 'Modification of graphene properties due to electron-beam irradiation' " [Appl. Phys. Lett. 95, 246101(2009)]

Published: Dec 2009 in Applied Physics Letters
DOI: 10.1063/1.3272961

Thermal properties of the optically transparent pore-free nanostructured yttria-stabilized zirconia

Published: Dec 2009 in Journal of Applied Physics
DOI: 10.1063/1.3264613

Heat Removal in Silicon-on-Insulator Integrated Circuits With Graphene Lateral Heat Spreaders

Published: Dec 2009 in IEEE Electron Device Letters
DOI: 10.1109/LED.2009.2034116

Chill Out

Published: Oct 2009 in IEEE Spectrum
DOI: 10.1109/MSPEC.2009.5267996

Heat conduction in graphene: experimental study and theoretical interpretation

Published: Sep 2009 in New Journal of Physics

DOI: 10.1088/1367-2630/11/9/095012

Gating of single layer graphene using DNA

Published: Aug 2009 in Proceedings of SPIE - The International Society for Optical Engineering

DOI: 10.1117/12.826801

Space radiation effects modeling and analysis of quantum dot based photovoltaic cells

Published: Aug 2009 in Proceedings of SPIE - The International Society for Optical Engineering

DOI: 10.1117/12.826691

Ultraviolet Raman microscopy of single and multilayer graphene

Published: Aug 2009 in Journal of Applied Physics

DOI: 10.1063/1.3197065

Raman nanometrology of graphene: Temperature and substrate effects

Published: Jul 2009 in Solid State Communications

DOI: 10.1016/J.SSC.2009.01.036

ANALYSIS AND MODELING OF SPACE RADIATION EFFECTS IN QUANTUM DOT BASED NANOMATERIALS FOR HIGH-EFFICIENCY PHOTOVOLTAIC CELLS

Published: Jun 2009 in 2009 34TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, VOLS 1-3

DOI: 10.1109/PVSC.2009.5411642

Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite

Published: May 2009 in Applied Physics Letters

DOI: 10.1063/1.3136860

Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering

Published: Apr 2009 in Physical Review B

DOI: 10.1103/PHYSREVB.79.155413

Modification of graphene properties due to electron-beam irradiation

Published: Jan 2009 in Applied Physics Letters

DOI: 10.1063/1.3062851

Simulation of Quantum Dot-Based Nanodevices for Photovoltaic Applications with Multiscale Models

Published: 2009 in International Journal for Multiscale Computational Engineering

DOI: 10.1615/INTJMULCOMPENG.V7.I1.20

Low-frequency electronic noise in the double-gate single-layer graphene transistors

Published: 2009 in Applied Physics Letters

DOI: 10.1063/1.3180707

Reserve selection and persistence: complementing the existing Atlantic Forest reserve system

Published: 2009 in Biodiversity and Conservation

DOI: 10.1007/S10531-008-9513-2

Flicker Noise in Bilayer Graphene Transistors

Published: 2009 in IEEE Electron Device Letters

DOI: 10.1109/LED.2008.2011929

Enhancement of the Thermoelectric Figure of Merit in Gated Bismuth Telluride Nanowires

Published: 2009 in Materials Research Society Symposium - Proceedings

DOI: 10.1557/PROC-1166-N05-09

Phonon-engineered mobility enhancement in the acoustically mismatched silicon/diamond transistor channels

Published: Oct 2008 in Applied Physics Letters

DOI: 10.1063/1.3007986

Computational Design of the Intermediate-Band Solar Cells Based on the Quantum Dot Superlattices

Published: Aug 2008 in Proceedings of SPIE - The International Society for Optical Engineering

DOI: 10.1117/12.794233

Raman nanometrology of graphene on arbitrary substrates and at variable temperature

Published: Aug 2008 in Proceedings of SPIE - The International Society for Optical Engineering

DOI: 10.1117/12.795421

Thermal conductivity of ultrathin tetrahedral amorphous carbon films

Published: Jul 2008 in Applied Physics Letters

DOI: 10.1063/1.2957041

Investigation of thermal crosstalk between SOIFETs by the subthreshold sensing technique

Published: Jul 2008 in IEEE Transactions on Electron Devices

DOI: 10.1109/TED.2008.925162

Extremely High Thermal Conductivity of Graphene: Prospects for Thermal Management Applications in Silicon Nanoelectronics

Published: Jun 2008 in IEEE Silicon Nanoelectronics Workshop

DOI: 10.1109/SNW.2008.5418404

Phonon Engineered Silicon - Diamond Nanoscale Heterostructures with Enhanced Carrier Mobility

Published: Jun 2008 in IEEE Silicon Nanoelectronics Workshop

DOI: 10.1109/SNW.2008.5418471

High-temperature quenching of electrical resistance in graphene interconnects

Published: May 2008 in Applied Physics Letters
DOI: 10.1063/1.2927371

Thermal conductivity of nitrogenated ultrananocrystalline diamond films on silicon

Published: Apr 2008 in Journal of Applied Physics
DOI: 10.1063/1.2907865

Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits

Published: Apr 2008 in Applied Physics Letters
DOI: 10.1063/1.2907977

Near-field optical transducer for heat-assisted magnetic recording for beyond-10-Tbit/in² densities

Published: Mar 2008 in Journal of Nanoelectronics and Optoelectronics
DOI: 10.1166/JNO.2008.007

Spectroscopic Raman Nanometrology of Graphene and Graphene Multilayers on Arbitrary Substrates

Published: Mar 2008 in Journal of Physics: Conference Series
DOI: 10.1088/1742-6596/109/1/012008

Superior thermal conductivity of single-layer graphene

Published: Mar 2008 in Nano Letters
DOI: 10.1021/NL0731872

Journal of nanoelectronics and optoelectronics: Entering the third year

Published: Mar 2008 in Journal of Nanoelectronics and Optoelectronics
DOI: 10.1166/JNO.2008.001

Properties of graphene produced by the high pressure-high temperature growth process

Published: Mar 2008 in Micro & Nano Letters
DOI: 10.1049/MNL:20070074

Multiscale models of quantum dot based nanomaterials and nanodevices for solar cells

Published: 2008 in COMPUTATIONAL SCIENCE - ICCS 2008, PT 2
DOI: 10.1007/978-3-540-69387-1_27

Measurements of inter-and-intra device transient thermal transport on SOIFETs

Published: Dec 2007 in IEEE INTERNATIONAL ELECTRON DEVICES MEETING, VOLS 1 AND 2
DOI: 10.1109/IEDM.2007.4418978

The effect of substrates on the Raman spectrum of graphene: Graphene-on-sapphire and graphene-on-glass

Published: Nov 2007 in Applied Physics Letters
DOI: 10.1063/1.2805024

Intermediate-band solar cells based on quantum dot supracrystals

Published: Oct 2007 in Applied Physics Letters
DOI: 10.1063/1.2799172

Charge-carrier states and light absorption in ordered quantum dot superlattices

Published: Sep 2007 in Physical Review B
DOI: 10.1103/PHYSREVB.76.125417

Size-quantized oscillations of the electron mobility limited by the optical and confined acoustic phonons in the nanoscale heterostructures

Published: Sep 2007 in Journal of Applied Physics
DOI: 10.1063/1.2777105

Temperature dependence of the Raman spectra of graphene and graphene multilayers

Published: Sep 2007 in Nano Letters
DOI: 10.1021/NL071033G

Variable temperature Raman microscopy as a nanometrology tool for graphene layers and graphene-based devices

Published: Aug 2007 in Applied Physics Letters
DOI: 10.1063/1.2771379

Phonon engineering in hetero- and nanostructures

Published: Aug 2007 in Journal of Nanoelectronics and Optoelectronics
DOI: 10.1166/JNO.2007.201

Acoustic phonon engineering of thermal properties of silicon-based nanostructures

Published: Jun 2007 in Journal of Physics: Conference Series
DOI: 10.1088/1742-6596/92/1/012086

The size-quantized oscillations of the optical-phonon-limited electron mobility in AlN/GaN/AlN nanoscale heterostructures

Published: Jun 2007 in Journal of Physics: Conference Series
DOI: 10.1088/1742-6596/92/1/012022

Electron-polar optical phonon scattering suppression and mobility enhancement in wurtzite heterostructures

Published: Jun 2007 in Journal of Physics: Conference Series
DOI: 10.1088/1742-6596/92/1/012050

High speed nano-optical photodetector for free space communication

Published: Apr 2007 in Proceedings of SPIE - The International Society for Optical Engineering
DOI: 10.1117/12.721336

A special issue on TeraHertz techniques and applications

Published: Apr 2007 in Journal of Nanoelectronics and Optoelectronics

DOI: 10.1166/JNO.2007.001A

Confined optical phonon modes in aligned nanorod arrays detected by resonant inelastic light scattering

Published: Feb 2007 in Nano Letters

DOI: 10.1021/NL062818+

Micro-Raman spectroscopic characterization of ZnO quantum dots and nanocrystals and nanowires

Published: Feb 2007 in Proceedings of SPIE - The International Society for Optical Engineering

DOI: 10.1117/12.713648

Giant enhancement of the carrier mobility in silicon nanowires with diamond coating

Published: Nov 2006 in Nano Letters

DOI: 10.1021/NL0615540

Thermal conduction in nanocrystalline diamond films: Effects of the grain boundary scattering and nitrogen doping

Published: Oct 2006 in Applied Physics Letters

DOI: 10.1063/1.2364130

Thermal conductivity of diamond-like carbon films

Published: Oct 2006 in Applied Physics Letters

DOI: 10.1063/1.2362601

Transport study of a single bismuth nanowire fabricated by the silver and silicon nanowire shadow masks

Published: Oct 2006 in Applied Physics Letters

DOI: 10.1063/1.2357847

Electron mobility enhancement in AlN/GaN/AlN heterostructures with InGaN nanogrooves

Published: Sep 2006 in Applied Physics Letters

DOI: 10.1063/1.2349302

Built-in field effect on the electron mobility in AlN/GaN/AlN quantum wells

Published: Sep 2006 in Applied Physics Letters

DOI: 10.1063/1.2349835

Electrothermal simulation of the self-heating effects in GaN-based field-effect transistors

Published: Sep 2006 in Journal of Applied Physics

DOI: 10.1063/1.2336299

Measurement of global instability of compact torus by three-dimensional tomography

Published: Sep 2006 in Review of Scientific Instruments

DOI: 10.1063/1.2349590

Solar cell nanotechnology for improved efficiency and radiation hardness

Published: Aug 2006 in *Photonics for Space Environments* Xi

DOI: 10.1117/12.681252

Capacitance-voltage spectroscopy of trapping states in GaN/AlGaN heterostructure field-effect transistors

Published: Aug 2006 in *Journal of Nanoelectronics and Optoelectronics*

DOI: 10.1166/JNO.2006.212

Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals

Published: Apr 2006 in *Physical Review B*

DOI: 10.1103/PHYSREVB.73.165317

Evidence for possible flexoelectricity in tobacco mosaic viruses used as nanotemplates

Published: Apr 2006 in *Applied Physics Letters*

DOI: 10.1063/1.2194008

ZnO growth on Si with low-temperature CdO and ZnO buffer layers by molecular-beam epitaxy

Published: Apr 2006 in *Journal of Electronic Materials*

DOI: 10.1007/S11664-006-0122-0

ZnO quantum dots: Physical properties and optoelectronic applications

Published: Apr 2006 in *Journal of Nanoelectronics and Optoelectronics*

DOI: 10.1166/JNO.2006.002

ZnO growth on si with low-temperature ZnO buffer layers by ECR-assisted MBE

Published: Jan 2006 in *Journal of Crystal Growth*

DOI: 10.1016/J.JCRYSGRO.2005.09.056

Lax representation of WZNW-like systems

Published: 2006 in *Regular and Chaotic Dynamics*

DOI: 10.1070/RD2006V011N04ABEH000362

Simulation of self-heating and temperature effect in GaN-based metal-semiconductor field-effect transistor

Published: 2006 in *Materials Research Society Symposium - Proceedings*

DOI: 10.1557/PROC-0892-FF13-05

Phonon-hopping thermal conduction in quantum dot superlattices

Published: Nov 2005 in *Applied Physics Letters*

DOI: 10.1063/1.2130711

Phonon confinement effects in hybrid virus-inorganic nanotubes for nanoelectronic applications

Published: Oct 2005 in *Nano Letters*

DOI: 10.1021/NL051245I

Acoustic-phonon propagation in rectangular semiconductor nanowires with elastically dissimilar barriers

Published: Sep 2005 in Physical Review B

DOI: 10.1103/PHYSREVB.72.113311

Acoustic phonon engineering in coated cylindrical nanowires

Published: Sep 2005 in Superlattices and Microstructures

DOI: 10.1016/J.SPMI.2005.06.001

Increased thermal conductivity of free-standing low-dislocation-density GaN films

Published: Sep 2005 in Physica Status Solidi (a)

DOI: 10.1002/PSSA.200521222

High speed nanotechnology-based photodetector

Published: Aug 2005

DOI: 10.1117/12.617888

Ion kinetic effect on bifurcated relaxation to a field-reversed configuration in TS-4 CT experiment

Published: Jul 2005 in Nuclear Fusion

DOI: 10.1088/0029-5515/45/8/010

Nanophononics: Phonon engineering in nanostructures and nanodevices

Published: Jul 2005 in Journal of Nanoscience and Nanotechnology

DOI: 10.1166/JNN.2005.175

Assembly and characterization of hybrid virus-inorganic nanotubes

Published: Jun 2005 in Applied Physics Letters

DOI: 10.1063/1.1952587

Comment on "Giant exciton-light coupling in ZnO quantum dots" [Appl. Phys. Lett. 81, 748 (2002)]

Published: May 2005 in Applied Physics Letters

DOI: 10.1063/1.1942632

Investigation of the trap states and their effect on the low-frequency noise in GaN/AlGaN HFETs

Published: May 2005 in Proceedings of SPIE - The International Society for Optical Engineering

DOI: 10.1117/12.609571

Thermal conduction in Al_xGa_{1-x}N alloys and thin films

Published: Apr 2005 in Journal of Applied Physics

DOI: 10.1063/1.1868876

Functionally engineered carbon nanotubes - Peptide nucleic acid nanocomponents

Published: Mar 2005 in Abstracts of Papers of the American Chemical Society

Vibrational Modes of Nano-Template Viruses

Published: Mar 2005 in Journal of Biomedical Nanotechnology

DOI: 10.1166/JBN.2005.005

Polar optical phonons in wurtzite spheroidal quantum dots: theory and application to ZnO and ZnO/MgZnO nanostructures

Published: Feb 2005 in Journal of Physics: Condensed Matter

DOI: 10.1088/0953-8984/17/7/003

Origin of the optical phonon frequency shifts in ZnO quantum dots

Published: Jan 2005 in Applied Physics Letters

DOI: 10.1063/1.1861509

The method of series expansion for 3-D vector tomography reconstruction

Published: Jan 2005 in Journal of Computational Physics

DOI: 10.1016/J.JCP.2004.07.001

Oligonucleotide metallization for conductive bio-inorganic interfaces in self assembled nanoelectronics and nanosystems

Published: 2005 in Micro- and Nanosystems- Materials and Devices. Symposium (Materials Research Society Symposium Proceedings Volume 872)

DOI: 10.1557/PROC-872-J10.2

Interpretation of the phonon frequency shifts in ZnO quantum dots

Published: 2005 in Micro- and Nanosystems- Materials and Devices. Symposium (Materials Research Society Symposium Proceedings Volume 872)

DOI: 10.1557/PROC-872-J13.21

Electrical and thermal conductivity of Ge/Si quantum dot superlattices

Published: 2005 in Journal of the Electrochemical Society

DOI: 10.1149/1.1897365

Bio-assembly of nanoparticles for device applications

Published: 2005 in NSTI Nanotechnology Conference and Expo, NSTI-Nanotech

Lamisil in the treatment of patients with oto- and pharyngomycoses

Published: 2005 in Vestnik Otorinolaringologii

Interface and confined optical phonons in wurtzite nanocrystals

Published: Dec 2004 in Physical Review B

DOI: 10.1103/PHYSREVB.70.233205

Origin of ultraviolet photoluminescence in ZnO quantum dots: Confined excitons versus surface-bound impurity exciton complexes

Published: Dec 2004 in Applied Physics Letters

DOI: 10.1063/1.1835992

Radiative lifetime of excitons in ZnO nanocrystals: The dead-layer effect

Published: Nov 2004 in Physical Review B

DOI: 10.1103/PHYSREVB.70.195410

Low-frequency vibrational modes of viruses used for nanoelectronic self-assemblies

Published: Oct 2004 in *Physica Status Solidi (B)*

DOI: 10.1002/PSSB.200409062

Confined electron-confined phonon scattering rates in wurtzite AlN/GaN/AlN heterostructures

Published: May 2004 in *Journal of Applied Physics*

DOI: 10.1063/1.1710705

Experimental investigation of Hall mobility in Ge/Si quantum dot superlattices

Published: Apr 2004 in *Applied Physics Letters*

DOI: 10.1063/1.1713049

Optical properties of wurtzite and zinc-blende GaN/AlN quantum dots

Published: 2004 in *Journal of Vacuum Science & Technology. B, Microelectronics and Nanometer Structures: Processing, Measurement, and Phenomena: an Official Journal of the American Vacuum Society*

DOI: 10.1116/1.1768188

Phonon spectrum and group velocities in AlN/GaN/AlN and related heterostructures

Published: Mar 2003 in *Superlattices and Microstructures*

DOI: 10.1016/S0749-6036(03)00069-7

Raman scattering from three-dimensionally regimented quantum dot superlattices

Published: Jan 2003 in *Superlattices and Microstructures*

DOI: 10.1016/S0749-6036(03)00049-1

Modeling-based optimization of thermoelectric nanostructures

Published: 2003 in *TWENTY-SECOND INTERNATIONAL CONFERENCE ON THERMOELECTRICS, PROCEEDINGS ICT*

DOI: 10.1109/ICT.2003.1287547

Thermoelectric properties of p-type PbTe/PbEuTe quantum well structures

Published: 2003 in *TWENTY-SECOND INTERNATIONAL CONFERENCE ON THERMOELECTRICS, PROCEEDINGS ICT*

DOI: 10.1109/ICT.2003.1287533

Carrier and phonon spectrum in quantum dot superlattices for optoelectronic and thermoelectric applications

Published: 2003 in *NANOTECH, VOL 3*

Modeling of Brillouin spectrum of a quantum dot crystal

Published: 2003 in *NANOTECH, VOL 3*

Electron and phonon energy spectra in a three-dimensional regimented quantum dot superlattice

Published: Dec 2002 in *Physical Review B*

DOI: 10.1103/PHYSREVB.66.245319

Modeling of phonon dispersion in a semiconductor quantum dot crystal

Published: 2002 in Materials Research Society Symposium - Proceedings

DOI: 10.1557/PROC-731-W10.4

The effect of the long-range order in a quantum dot array on the in-plane lattice thermal conductivity

Published: Jul 2001 in Superlattices and Microstructures

DOI: 10.1006/SPMI.2001.0981

Phonon heat conduction in a semiconductor nanowire

Published: Mar 2001 in Journal of Applied Physics

DOI: 10.1063/1.1345515

Excess heat removal from nanoscale devices

Published: 2001 in Energy and Electrochemical Processes for a Cleaner Environment, Proceedings

In-plane lattice thermal conductivity of a quantum-dot superlattice

Published: Jul 2000 in Journal of Applied Physics

DOI: 10.1063/1.373723

Enhancement of the thermoelectric figure of merit of $\text{Si}_{1-x}\text{Ge}_x$ quantum wires due to spatial confinement of acoustic phonons

Published: Jul 2000 in Physica E: Low-dimensional Systems and Nanostructures

DOI: 10.1016/S1386-9477(00)00119-3

Electron interaction with confined acoustic phonons in quantum wires subjected to a magnetic field (vol 57, pg 4687, 1998)

Published: Oct 1998 in Physical Review B

DOI: 10.1103/PHYSREVB.58.10065