

Professor Christoph Gerber
Professor at the Department of Physics,
University of Basel,
Switzerland

Universität Basel, Rektorat, Postfach 2148, 4001 Basel,
Switzerland

The World Cultural Council
Interdisciplinary Committee
A. Postal 10
1083 Col. Lomas de Chapultepec
C.P. 11002 México D.F.
México

Basel, 14. Dezember 2017

Nomination of Christoph Gerber for the 2018 Albert Einstein Award of Science

Dear Members of the Interdisciplinary Committee

It is our exceptional honor and pleasure to nominate Prof. Christoph Gerber as a candidate for the 2018 Albert Einstein Award of Science.

Christoph Gerber has made paradigm-shifting contributions to the scientific world, which in turn have enabled the development of the science of nanotechnology which impacts our lives at all levels of society.

In 1986 Christoph Gerber pioneered, together with Gerd Binnig and Calvin Quate, the invention and demonstration of atomic force microscopy AFM, which was a breakthrough in the techniques which allow the portrayal of materials at atomic resolution. For the first time, chemists and physicists could "see" molecules and atoms. Furthermore, not only could these objects be seen, but they could also be manipulated. Tools of this type were truly the birth of nanotechnology as an experimental science.

While other scanning probe microscopy techniques are limited by inherent technical restrictions, AFM is versatile, allowing not only the imaging of conducting and insulating probes, but also their manipulation on an atomic scale, much like 3-D printing with atoms. With the possibility of also using the technique at the air-liquid interface, it was possible to envisage hitherto unimagined applications in the life sciences, ranging from the manipulation and measurement of forces defining the configuration of specific biomolecules, to the sensing of individual molecules and the development of reliable and rapid diagnostics for killer diseases such as cancer.

The development of the AFM technique and its application to science at the nanoscale in physics, chemistry, materials science and the life sciences is only now beginning to approach maturity, and we will undoubtedly see many more surprising and disruptive applications and results in the years to come.

With his dedication to science and his continued development of the AFM technique, Christoph Gerber is a true role model in scholarship. His enthusiastic personality continues to inspire many young scientists both at our University and at institutions across the world. His work inspires and challenges future generations of scientists who recognize the fundamental impact of Prof. Gerber's discoveries.

Although the discovery of force microscopy methods belongs in the physical sciences, the impact on society cannot be underestimated. The state-of-the-art tools based upon the fundamental discoveries of Gerber lie at the heart of the world-wide revolution in nanoscale sciences, nanotechnology and nanomedicine. Whether it be with the manipulation of individual atoms in the microelectronics industry, the characterization of next-generation materials for solar-energy harvesting or the high-throughput analysis of breast tissue biopsies, the discovery of the atomic force microscope by Christoph Gerber has had an impact on every living person on our planet and has a genuine and wide-reaching contribution to the well-being of mankind.

Yours sincerely

Prof. Dr. Dr. h.c. Andrea Schenker-Wicki
President

Prof. Dr. Edwin Constable
Vice President for Research

University of Basel, Department of Physics, Klingelbergstrasse 82, 4056 Basel

Basel, December 15, 2017

Albert Einstein World Award of Science 2018 Nomination of Prof. Dr. Christoph Gerber for the co-invention and further development of the Atomic Force Microscope

Dear Committee Members:

It is a great pleasure for me to write this letter of support for the nomination of Prof. Dr. Christoph Gerber, University of Basel, for the **Albert Einstein World Award of Science 2018**.

Christoph Gerber is one of the most influential pioneers in scanning probe microscopy worldwide. He is the co-inventor of the Scanning Tunneling Microscope (STM, Nobel Prize 1986 for Binnig and Rohrer) and of the **Atomic Force Microscope (AFM)** [1], published about thirty years ago. According to Web of Science (Google scholar), the total citation count for Ref. [1] is more than 9000 (16000) citations. The AFM has become one of the most important research tools in nanoscience, covering physics, chemistry, and biology. Christoph Gerber is also the co-inventor of the AFM in vacuum and at low-temperatures [2] and of biochemical sensors based on AFM technology [3].

The AFM is arguably the most widely used microscope in the Natural Sciences and still after many years of its invention has continued to increase its impact, in particular in biology and medicine. There is hardly any other tool that has come out of Physics that shows such a versatility and wide application, with no end in sight. Christoph Gerber has not only pioneered the conception and realization of the AFM [1], he has also been a pioneer in applying the AFM to many different areas of physics and in further refining the tool over the past three decades. His work and its impact has been recognized worldwide again and again. The invention of the AFM is an undisputed milestone in microscopy which deserves the highest recognition in Physics and more broadly in Natural Sciences. These fields could not have progressed in the way they did without the contribution of Christoph Gerber who dedicated his entire career to invent and to apply the most powerful microscopes that have opened up entire new worlds for many generations of researchers worldwide.

Gerber has co-authored more than 175 scientific papers that have appeared in peer-reviewed journals and has been cited more than 30'000 times (49'800) on Web of Science (Google scholar). He belongs to the one hundred worldwide most cited researchers in Physical Sciences. He has given numerous plenary and invited talks at international conferences. His work has been recognized with multiple honorary degrees and various awards and appeared in numerous articles in daily press and TV coverage. He is a Fellow of the American Physical

Page 1/2

Society, a Fellow of the World Technology Network, and a Fellow of the IOP Institute of physics UK. In 2016 Gerber has been awarded the Kavli Prize in Nanoscience (together with Gerd Binnig and Calvin Quate) for the Scanning Force Microscope, which is the most prestigious prize in nanoscience worldwide.

Gerber serves on the advisory board of several nanoscience institutes and has chaired and co-chaired various international conferences. His IP portfolio contains 37 patents and patent publications. Further details can be found on his homepage <https://cantileversensors.unibas.ch/ChGerber/Welcome.html> and on Wikipedia, https://en.wikipedia.org/wiki/Christoph_Gerber

In conclusion, Christoph Gerber's impact on Physics and Natural Sciences cannot be overstated and he is a most worthy candidate for the **Albert Einstein World Award of Science**. I thus give his nomination for this award my strongest possible support.

Sincerely Yours

Prof. Dr. Daniel Loss
Professor of Theoretical Physics
Director, Center for Quantum Computing and Quantum Coherence QC2 Basel

[1] G. K. Binnig, C. F. Quate, and Ch. Gerber. **Atomic Force Microscope**, *Phys. Rev. Lett.* **56** (9), 930-933 (1986).

[2] F. Giessibl, Ch. Gerber, and G. Binnig, *A low-temperature atomic force/scanning tunneling microscope for ultrahigh vacuum*, *J. Vac. Sci. Technol. B9*, 984-988 (1991).

[3] J. Zhang, H. P. Lang, F. Huber, A. Bietsch, W. Grange, U. Certa, R. Mckendry, H.-J. Guentherodt, M. Hegner, and Ch. Gerber, *Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA*, *Nature Nanotechnology* 1, 214-220 (2006).

World Cultural Council WCC
Consejo Cultural Mundial
A. Postal 10.1083
Col. Lomas de Chapultepec
C.P. 11002 México D.F.

México

Prof. Dr. Daniel J. Müller
Professor of Biophysics
Tel. +41 61 387 33 07
Fax +41 61 387 39 94
daniel.mueller@bsse.ethz.ch
www.bsse.ethz.ch
Basel, 17. December 2017

Nomination of Prof. Dr. Christoph Gerber for the Albert Einstein World Award of Science

Dear Ladies and Gentlemen,

Enclosed please find my nomination of Prof. Dr. Christoph Gerber (Swiss Nano Institute, University Basel, Switzerland) for Albert Einstein World Award of Science.

Scientific standing, scientific achievements and international visibility

A first successful approach to directly image and manipulate atoms at true atomic resolution. In 1981 Gerber together with Gerd Binnig and Heinrich Rohrer introduced a new type of microscope that initiated the nanotechnological revolution. Unlike traditional microscopes the scanning tunneling microscope (STM) did not use lenses. Instead, a sharp tip was moved close enough to a conductive surface for the electron wavefunctions of the atoms in the tip to overlap with the wavefunctions of the surface atoms. When a voltage was applied, electrons started to 'tunnel' through the vacuum gap, causing a current to flow from the foremost atom of the tip into the surface. For this millennium achievement, for which Gerd Binnig and Heinrich Rohrer received the Nobel Award in Physics in 1986, Christoph Gerber was instrumental to bring the STM to life. Christoph Gerber was also the first observing single atoms using the STM, which inspired the scientific world to use STM and to apply it to all kind of solid state materials and surfaces. Soon after, the STM could be applied to pick up and deliver atoms, to manipulate molecules or nucleic acids. In the meantime, STM can be applied to image orbitals of molecules and atoms, to switch chemical bonds, or to image magnetic dipoles. The STM thus contributed to the nanotechnological revolution and to the opening of the door of the nanoworld.

The brake through development of atomic force microscopy. Shortly after inventing the STM, Binnig and Gerber recognized the need of a microscope to image non-conducting surfaces at atomic resolution. They thus thought about a new concept of a microscope, the atomic force microscope (AFM), which invention in 1986 contributed even more to the nanotechnological revolution than the STM. As with the STM, the AFM relies on a sharp tip that is scanned over a surface. The tip being part of a cantilever that measures forces at atomic and molecular ranges. In a sense the AFM resembles a record player the forces between the surface and the atomically sharp tip cause the cantilever to bend in the vertical direction, and by measuring this deflection, it is possible to produce an image of the surface with atomic resolution. It was soon discovered that the forces measured with the AFM can be attractive or repulsive and depend on the nature of the interaction between the tip and the sample. Examples include chemical forces, van der Waals forces, electrostatic forces, capillary forces or friction forces.

First designed as an instrument to image the surfaces of non-conductive materials with high lateral and vertical resolution, the principle of the AFM has been adapted to work in various environments (for example, in liquids, at low temperatures, in high magnetic fields and so on), and also for chemical and biological applications when the tip is suitably modified. Its ability to investigate surfaces with unprecedented resolution introduced a wealth of related techniques. For instance, local electric charges on the tip or surface lead to electrostatic forces that allow the distribution of electric charge on a surface to be visualized. Other applications of the AFM allowed to image (bio)molecular systems and to map their chemical information at the same time. Similarly, magnetic forces can be imaged if the tip is coated with a magnetic material, such as cobalt, that has been magnetized along the tip axis. In other applications, the AFM has been adapted to image and manipulate living biological systems, to measure and manipulate chemical bonds or to measure biological interactions of receptor and ligands or of mammalian cells adhering to each other. Other examples apply AFM to image and dissect biological systems such as cells, chromosomes, membranes, proteins or DNA. In other contributions, Christoph Gerber co-introduced the AFM to sense single molecules from the gas and liquid phase or to measure the weight of living cellular systems. All this work, was highly inspired by Christoph Gerber, who pioneered not only the invention of the AFM but importantly also manifold applications of the AFM to physical, chemical and biological problems.

Conclusions

In summary, since its invention in 1986, the STM and more importantly the AFM have proven their suitability in various physical, chemical, biological and medical applications. The AFM was even shot to the Mars to characterize the environment. Statistically, there is no physical and chemical laboratory not having at least one AFM or STM, which enables researchers to investigate and manipulate their samples at the nanoscale. However, the unique possibility to image, probe and manipulate materials with unprecedented resolution and the ability to be combined with other technologies made the AFM the most powerful and versatile toolkit in nanoscience and nanotechnology. As a consequence, the revolutionary concept of the AFM enabled the development of numerous new technologies across all disciplines. Besides co-inventing STM and AFM, the beautiful concept of Gerber to adapt and apply scanning probe microscopy to address pertinent problems from the micro to the nanoscale and across all scientific disciplines is a major outcome of his scientific work, which nowadays impact many areas of science, including biology, medicine, and nanotechnology. When initiating his concepts Christoph Gerber did not follow the mainstream of science, but generated new ideas that were scientifically outstanding, highly relevant to other areas of science, and truly unexpected. It is clear that such fundamental ideas and concepts that change physical concepts and have direct impact on a wide field of applications are generated only a few times in a century. This makes Christoph Gerber an outstanding candidate for receiving prestigious awards such as the **Albert Einstein World Award of Science**. I would like to add that the recent accumulation of prestigious awards received by Christoph Gerber, including the recently received Kavli Prize, may be a promising indication that he will hopefully soon receive most prestigious scientific awards and merits.

For these reasons, I very strongly recommend Christoph Gerber as an internationally outstanding candidate for the Albert Einstein World Award of Science.

Sincerely,

Prof. Dr. Daniel J. Müller

Achievements Christoph Gerber

Christoph Gerber is a titular professor at the Department of Physics, University of Basel, Switzerland and the Swiss Nano Institute. He was a founding member and Director for Scientific Communication of the NCCR (National Center of Competence in Research Nanoscale Science). He was formerly a Research Staff Member in Nanoscale Science at the IBM Research Laboratory in Rueschlikon, Switzerland, and has served as a project leader in various programs of the Swiss National Science Foundation and in the European Framework Program 6.

For the past 40 years, his research has been focused on Nanoscale Science. He is a pioneer in Scanning Probe Microscopy, and he made major contributions to the invention of the Scanning Tunneling Microscope and the Atomic Force Microscope (AFM), he is also a co-inventor of Biochemical sensors based on AFM Technology, his current field of research.

He is the author and co-author of more than 180 scientific papers that have appeared in peer-reviewed journals and has been cited more than 30'000 times (Web of Science) Google Scholar: 49'900 <https://scholar.google.com/citations?user=w9b8kbgAAAAJ&hl=de> in cross-disciplinary fields. He belonged to the one hundred worldwide most cited researchers in Physical Sciences 2000. He has given numerous plenary and invited talks at international conferences.

His work has been recognized with multiple honorary degrees and various awards and appeared in numerous articles in daily press and TV coverage. 2016 he was awarded the Kavli Prize in Nanoscience as a co-recipient with Gerd Binnig and Calvin Quate for the Atomic Force Microscope. He is a Fellow of the American Physical Society, a Fellow of the World Technology Network and a Fellow of the IOP Institute of Physics UK. He serves in the advisory board of several nano institutes and has chaired and co-chaired various international conferences. His IP portfolio contains 39 patents and patent publications.

His way of addressing challenges follows the concepts of Nature. Nature is the best example of a system functioning on the nanometer scale, where the involved materials, energy consumption and data handling are optimized. The emergence of Atomic Force Microscopy (AFM) 31 years ago in the then fledgling field of nanotechnology led to a shift of paradigm in

the understanding and perception of matter at its most fundamental level. It undoubtedly has opened new avenues in physics, chemistry, biology and medicine and still is inspiring researchers around the world testified so far by more than 300'000 scientific articles on AFM in peer reviewed journals. Moreover, an AFM has already been sent to the Martian surface and one was on board of the recent European Rosetta mission to a comet to investigate stardust on the nanoscale. It seems not even the sky is the limit for AFM technology.

The concept behind Atomic Force Microscopy is strikingly simple: a nanoscale tip scans across a sample surface at atomically close range where the tiny forces between the sample and the tip are detected. These forces reveal many important properties of the sample, such as the arrangement of its individual atoms, now even with subatomic resolution. Electric and magnetic interactions, friction, and chemical bonding can induce these forces. The technique is applicable over a wide temperature range and in magnetic fields. Unlike scanning tunneling microscopy, atomic force microscopy can also be applied to insulating materials.

Another achievement with a tremendous impact is Nanosculpting. The term refers to adding, arranging, and removing atoms to produce desired phenomena and functions. The tip provides a versatile tool for accomplishing such control. Being able to manipulate conductors and insulators at the nanoscale has applications comparable to those of nanoscale 3D printing. Nanostructures created by force microscopy-based techniques include devices in nanomechanics, nanoelectronics, nanophotonics, nanomagnetism and quantummechanics.

Especially in life sciences the advantages of atomic force microscopy have become obvious: this includes experimenting in fluidic environment, which opens the possibility of exploring biological systems. A single molecule, such as a DNA or a protein molecule, can be suspended between the tip and surface. Lifting the tip stretches and unfolds the molecule. The measured restoring force reveals the molecule's elastic properties and functionality. High speed AFM for the first time enables to visualize biological functions in real time including dynamics in the time domain of chemical reaction monitoring the cellular machinery at the nanoscale and millisecond resolution.

Complementary to imaging and control on a molecular level, he pioneered the development of biochemical sensors based on the in-situ detection of biological reactions by temperature- and stress-sensitive cantilevers arrays, opening new doors for medical applications in fast and early diagnostics on the genetic level with point mutation resolution. The cantilever sensors are faster

than standard pyrosequencing methods and comparably sensitive as next-generation sequencing. Neither labelling, nor PCR amplification or sequencing are required in our method. The technique has the potential to play a vital role in personalized diagnosis including capturing circulating tumor cells (CTCs) in the bloodstream in the emerging field of liquid biopsies. Tailoring treatments to genetic makeup is part of the vision for precision medicine where all care is costume-fit to an individual DNA and genetic drug matching, which drugs work best for patients, what doses works best is part of Pharmacogenomics.

In addition, Atomic Force Microscopy has spawned a wide variety of measurement techniques invaluable for many purposes. These range from magnetic force and chemical force microscopy to magnetic resonance spectroscopy, scanning capacitance microscopy, friction force microscopy, single molecule spectroscopy and others all the way to biomedical sensing.

The high flexibility of AFM to image, probe and manipulate materials with unprecedented resolution and the ability to be combined with other technologies made it the most powerful and versatile toolkit in nanoscience and – technology of today. As a consequence, such new revolutionary concepts stimulated numerous new technologies across all disciplines and beyond for the benefit of mankind.

Curriculum Vitae of Christoph Gerber

Christoph Gerber is a titular professor at the Department of Physics, University of Basel, Switzerland. He was a founding member and Director for Scientific Communication of the NCCR (National Center of Competence in Research Nanoscale Science). He was formerly a Research Staff Member in Nanoscale Science at the IBM Research Laboratory in Rueschlikon, Switzerland, and has served as a project leader in various programs of the Swiss National Science Foundation and in the European Framework 6.

For the past 40 years, his research has been focused on Nanoscale Science. He is a pioneer in Scanning Probe Microscopy, and he made major contributions to the invention of the Scanning Tunneling Microscope and the Atomic Force Microscope (AFM), he is also a co-inventor of Biochemical sensors based on AFM Technology.

He is the author and co-author of more than 175 scientific papers that have appeared in peer-reviewed journals and has been cited more than 30'000 times in cross-disciplinary fields (Google Scholar: 49'800 times). He belonged to the one hundred worldwide most cited researchers in Physical Sciences in 2000. He has given numerous plenary and invited talks at international conferences.

His work has been recognized with multiple honorary degrees and various awards and appeared in numerous articles in daily press and TV coverage. 2016 he has been awarded the Kavli Prize in Nanoscience together with Gerd Binnig and Calvin Quate for the Atomic Force Microscope. He is a Fellow of the American Physical Society, a Fellow of the World Technology Network and a Fellow of the IOP Institute of physics UK. He serves on the advisory board of several nano institutes and has chaired and co-chaired various international conferences. His IP portfolio contains 37 patents and patent publications. His private interest range from literature (scientific and a good novel) to art and sports (he is a passionate skier and plays an acceptable round of golf).

His current interests include

- Biochemical sensors based on AFM Technology
- Chemical surface identification on the nanometer scale with AFM
- Nanomechanics, nanorobotics, and molecular devices at the ultimate limits of measurement and fabrication
- Self-organization and self-assembly at the nanometer scale

Invitations

- Visiting scientist University of Madrid, Spain, April 1983
- Visiting scientist University of Santa Barbara, CA, USA, October 1985
- Visiting scientist California Institute of Technology, CA, USA, November 1985
- Visiting scientist Stanford University, CA, USA, 1985-1986
- Visiting Professor Tohoku University, IMR, Sendai, Japan, 1997-1998 and 2001-2002
- University of Bristol's IAS Benjamin Meaker Visiting Professorship (2014/2015)

Previous jobs

- Group leader R & D Dept. Contraves Stockholm, Sweden, 1964-1966
- Research assistant and Research Staff Member IBM Zurich Research Laboratory, Rueschlikon, Switzerland, 1966-2004
- Assignment IBM Research Center, Almaden, CA, USA, 1985-1986
- Assignment IBM Physics Group, University of Munich, Germany, 1987-1989

Joint studies on various scientific subjects with

- University of Bern, Switzerland	1982-1983
- University of Madrid, Spain	1983
- PSI Villigen, Switzerland	1996- 2000
- ETH Zurich, Switzerland	1996-2000
- Nanocenter Aarhus Denmark iNano	1998-2004
- University of Stanford, CA, USA	1986-2012
- University of Cambridge IRC, UK	current
- University College London UK	current
- University Lund, Sweden	current

Consultancies

- University of Washington, Seattle, USA	1985
- University of California, Berkeley, USA	1985
- University of California Santa Barbara USA	1985
- University of Marseilles, France	1986
- Park Scientific, Sunnyvale, CA, USA	1990
- Atomcraft project Tsukuba, Japan	1994-1996
- University of Augsburg, Germany	1998
- ETH Zurich, Switzerland	1996-2000
- Veeco Digital Instruments, Santa Barbara, CA, USA	2000-2001
- Concentris Basel, Switzerland,	2001-2013
- CRANN Nanocenter Trinity college Dublin, Ireland,	current
- Tokyo Institute of Technology (Tokyo Tech), Japan,	current
,	

Academic memberships and external activities

- Co-organizer STM Conference Interlaken, Switzerland, August 1991
- Chairman of Plenary session International Conference on STM Beijing, China, 1993
- Invited consultant NATO program in Nanoscale Science, 1993-1997
- Co-director ASI NATO School, Schluchsee, Germany, March 1994
- Co-director NATO Workshop Cambridge, UK, April 1994
- Tutor to graduate students on Nanoscale Science, Bern, Switzerland, April 1994
- Director NATO Workshop Loch Lomond, Scotland, October 1995
- Co-organizer Japanese-Swiss Science Seminar, Ascona, Switzerland, 1996
- Co-project leader Swiss Science Foundation (NFP36), 1996-1998
- Project leader Swiss Priority Program on Micro- and Nanosystems, 1996-1999
- Chairman International Conference of STM/AFM application, Dresden, Germany, April 1997
- Chairman Conference of the Directors Nato Workshops and Schools in Nanoscale Science, Toledo, Spain, May 1997
- Chairman Application SPM, Cambridge, October 1997
- Co-chairman SXM 3 Conference Technological Application of Scanning Probe Methods, Basel, Switzerland, September 1998
- Co-chairman Conference Noncontact Dynamic AFM, Pontresina, Switzerland, Sept. 1999
- Guest Editor Applied Surface Science, April 2000
- Member of Steering Committee International Center of Quantum Structure, Chinese Academy of Science, October 2000
- Chief Judge for Science Talent Search, National Science & Technology Board, State of Singapore, February 2001

- Member of the Innovation Committee, National Program TOP Nano 21, Switzerland, February 2001
- Project Leader Molecular Machinery NCCR Swiss National Program for Nanoscience June 2001
- Member of the Editorial Board, Journal of Nanotechnology, April 2001
- Member of the Steering Committee, Consortium Intramolecular Computation, April 2001
- Managing Editor, Journal of Nanoscience, August 2001
- Member of the Steering committee NCAFM conference 2003 September Dublin Irland December 2002
- Member of the Editorial Board Central European Science Journal February 2003
- Member of Scientific committee EMN04 October 2004 Paris France
- Member of external expert panel faculty position professor in Bio/Nanoscience University of Lund Sweden March 2004
- Co-Organiser FRONTIERS Workshop "Bio-Nano", Lenzerheide (Switzerland) January 16-19, 2005
- Advisor to ATI Advanced Technology Institute Tokyo , Japan March 2005
- Member Advisory Board EU framework 6 Nano Safe Brussels August 2005
- Member Advisory Board Nanocenter CRANN Trinity college Dublin IR August 2005
- Member of the editorial board journal Nano Feb. 2006
- Co-Organiser FRONTIERS Workshop "Understanding processes at the molecular level", Lenzerheide (Switzerland) March 19-23, 2006
- Co organiser ICN&T2006 Basel Switzerland July 31 August 4 2006
- Guest Editor Nanotechnology, January 2007
- Co-Organiser FRONTIERS Workshop "Exploring new FRONTIERS in Bio/Nano", Zermatt (Switzerland) March 18-22, 2007
- Member of Editorial Advisory Board Journal 'ACS Nano' (American Chemical Society), August 2007
- Co-Organiser FRONTIERS Workshop "FRONTIERS Bio-Nano Winter School", Zermatt (Switzerland) March 9-13, 2008
- Member of the World Economic Forum's Global Agenda Council on the Challenges of Nanotechnology, June 2008
- Member of the International Advisory Board for the King Abdullah Institute of Nanotechnology, Riyadh/Saudi Arabia, June 2008
- Co-chair CIMTEC 2010, 12th International Ceramic Congress, "Disclosing materials at Nanoscale", June 6-11, 2010, Montecatini Terme, Tuscany, Italy.
- Chair "Seeing at the Nanoscale VIII, Basel, 30.8.-3.9.2010.
- Member of the International Scientific Committee of the NanoBio 2010 Conference, Zürich, Switzerland
- Advisory Board Member of the Beilstein Journal of Nanotechnology, January 2010
- Member of the Scientific American Audience Panel, January 2010
- Member of the advisory board: Nanometer Structure Consortium at Lund University October 2011
- Member of the program committee Swiss Nanoconvention Lausanne May 2012
- Journal Nanotechnology Discussion podcast to celebrate the 25th volume on Tuesday 29th October 2013
- Celebration 20th volume journal nanotechnology Dec. 2013 Podcast discussion Profs. Gerber, Giessibl and Gimzewski

<http://iopscience.iop.org/0957-4484/page/Nanotechnology%20Discussions%20podcasts>

- Member scientific committee 2nd Dresden Nanoanalysis Symposium July 2-3, 2014 Dresden
- Member of Advisory board IRC program Nanoinstitute University College London UCL 2014
- Member of the IMDEA Nanoscience Scientific Advisory Board, Madrid (Spain), 2014-19
- IAS Benjamin Meaker Visiting Professorship (BMVP) 2014/2015, Bristol

Inventions

- 37 patents and patent publications including numerous IBM inventions achievement awards

Awards and Honours

- IBM Research Division Awards: 1975, 1979, 1982, 1990, 1991, 1997 on various subjects
- IBM Research Division Outstanding Contribution Award for Design Development and Technology Transfer of STM, 1984
- IBM Outstanding Technical Achievement Award for the Contribution to Commercialization of STM, 1987
- IBM Outstanding Technical Achievement Award for the invention of the Atomic Force Microscope, 1987
- Dr. phil. II h.c., University of Basel, Switzerland, 1987
- IBM Recognition Event for Outstanding Contribution, 1988
- Fellow of the American Physical Society (APS), October 1999
- Honorary Professor of the University of St. Andrews, Scotland, February 2000
- Honorary Professor Chinese Academy of Science, Institute of Physics, October 2000
- Among the 100 most cited researchers in physical science in the world, November 2000
- Titular professor, Department of Physics, University of Basel, Switzerland, since 2004
- Co-recipient of the Economist Innovation award No boundaries September 2004
- Fellow Institute of Physics IOP UK November 2004
- World Technology Award for IT Hardware, World Technology Network, November 3, 2006
- Fellow of the World Technology Network (WTN), November 2006
- Research Excellence Award, Nano / Bio Interface Center, University of Pennsylvania, February 2007
- James Waters Award Lecture for the Development of AFM Technology, February 2007
- Science Prize of the State of Basel, Switzerland, August 2011
- Scientific Excellence Award of the Alliance for NanoHealth Houston Texas, October 2011
- Life time achievement award, Nature Publishing Group, Nature Biotechnology, Nature Nanotechnology, Nature Medicine, February 2012
- Honorary Professorship University St. Andrews, Scotland, September 2013-August 2016
- Who is Who in Switzerland the one hundred most important people 2013
- Elected by the "Who is Who in Basel" Committee for 2014 <http://www.ww-magazin.ch/ww-basel/komitee-basel.php>
- International Society for Nanoscale Science, Computation, and Engineering (ISNSCE) Nanoscience Prize 2016, Snowbird (USA), May 2016
- 2016 he has been awarded the Kavli Prize in Nanoscience together with Gerd Binnig and Calvin Quate for the Atomic Force Microscope.
- November 2016: Honorary Doctor Degree from Univ. Twente, The Netherlands.

- Since Dec 2016 Member of the Norwegian Academy of Science as Laureate of the Kavli Prize
- Elected by the “Who is Who in Basel” Committee for 2017
- Honorary Member of the Swiss Nanoscience Institute, September 2017

Important AFM related publications

Atomic force microscope

G Binnig, CF Quate, C Gerber
Physical review letters 56 (9), 930 1986

Atomic resolution with atomic force microscope

G Binnig, C Gerber, E Stoll, TR Albrecht, CF Quate
EPL (Europhysics Letters) 3 (12), 1281 1987

Observation of a chemical reaction using a micromechanical sensor

JK Gimzewski, C Gerber, E Meyer, RR Schlittler
Chemical Physics Letters 217 (5-6), 589-594 1994

Photothermal spectroscopy using a micromechanical device

JR Barnes, RJ Stephenson, ME Welland, C Gerber JK Gimzewski
Nature volume 372 Issue 6501 pages 79-81 Nov. 1994

Surface stress in the self-assembly of alkanethiols on gold

R Berger, E Delamarche, HP Lang, C Gerber, JK Gimzewski, E Meyer, HJ Güntherodt
Science 276 (5321), 2021-2024 1997

Translating biomolecular recognition into nanomechanics

J Fritz, MK Baller, HP Lang, H Rothuizen, P Vettiger, E Meyer, HJ Güntherodt, C Gerber, JK Gimzewski
Science 288 (5464), 316-318 2000

Reproducible switching effect in thin oxide films for memory applications

A Beck, JG Bednorz, C Gerber, C Rossel, D Widmer
Applied Physics Letters 77 (1), 139-141 2000

A chemical sensor based on a microfabricated cantilever array with simultaneous resonance-frequency and bending readout

FM Battiston, JP Ramseyer, HP Lang, MK Baller, C Gerber, JK Gimzewski, E Meyer, HJ Güntherodt
Sensors and Actuators B: Chemical 77 (1), 122-131 2001

Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array

R McKendry, J Zhang, Y Arntz, T Strunz, M Hegner, HP Lang, MK Baller, U Certa, E Meyer, HJ Güntherodt, C Gerber
Proceedings of the National Academy of Sciences 99 (15), 9783-9788 2002

Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA

J Zhang, HP Lang, F Huber, A Bietsch, W Grange, U Certa, R McKendry, HJ Güntherodt, M Hegner, C Gerber
Nature nanotechnology 1 (3), 214-220 2006

Direct detection of a BRAF mutation in total RNA from melanoma cells using cantilever arrays

F Huber, HP Lang, N Backmann, D Rimoldi, C Gerber
Nature nanotechnology 8 (2), 125-129 2013

Inertial picobalance reveals fast mass fluctuations in mammalian cells

D Martínez-Martín, G Fläschner, B Gaub, S Martin, R Newton, C Beerli, J Mercer, C Gerber, DJ Müller
Nature 550 (7677), 500-505 2017

Prof. Christoph Gerber

Chronological publication list (updated Dec 11, 2017):

1. "A Spin-Flop Bicritical Line in GdAlO_3 "
H. Rohrer, B. Derighetti and Ch. Gerber
Physica 86-88 B&C, Part II, 597-598 (1977).
2. "Bicritical and Tetracritical Behavior of GdAlO_3 "
H. Rohrer and Ch. Gerber
Phys. Rev. Lett. 38(16), 909-912 (1977).
3. "Polykritischer Punkt im Antiferromagneten GdAlO_3 "
H. Rohrer, Ch. Gerber and B. Derighetti
Helv. Phys. Acta 50, Fasc. 5, 603 (1977).
4. "Crossover Effects near the Spin-Flop Multicritical Point"
H. Rohrer and Ch. Gerber
J. Appl. Phys. 49(3), Part II, 1341-1343 (1978).
5. "Critical-Bicritical Crossover at the Spin-Flop Transition of Antiferromagnets"
H. Rohrer and Ch. Gerber
Europhys. Conf. Abstr. 2G, pp. 56 (1978).
6. "Tunneling through a Controllable Vacuum Gap"
G.K. Binnig, H. Rohrer, Ch. Gerber and E. Weibel
Appl. Phys. Lett. 40(2), 178-180 (1982).
7. "Surface Studies by Scanning Tunneling Microscopy"
G.K. Binnig, H. Rohrer, Ch. Gerber and E. Weibel
Phys. Rev. Lett. 49(1), 57-61 (1982).
8. "Vacuum Tunneling"
G.K. Binnig, H. Rohrer, Ch. Gerber and E. Weibel
Physica 109/110 B&C(1/3), Part III, 2075-2077 (1982).
9. "7×7 Reconstruction on Si(111) Resolved in Real Space"
G.K. Binnig, H. Rohrer, Ch. Gerber and E. Weibel
Phys. Rev. Lett. 50(2), 120-123 (1983).
10. "(111) Facets as the Origin of Reconstructed Au(110) Surfaces"
G.K. Binnig, H. Rohrer, Ch. Gerber and E. Weibel
Surf. Sci. 131(1), Part II, L379-L384 (1983).

11. "Real-Space Observation of the 2×1 Structure of Chemisorbed Oxygen on Ni(100) by Scanning Tunneling Microscopy"
A.M. Baró, G.K. Binnig, H. Rohrer, Ch. Gerber, E. Stoll, A. Baratoff and F. Salvan
Phys. Rev. Lett. 52(15), 1304-1307 (1984).
12. "Real-Space Observation of the Reconstruction of Au(100)"
G.K. Binnig, H. Rohrer, Ch. Gerber and E. Stoll
Surf. Sci. 144(2/3), 321-335 (1984).
13. "Surface Roughness Standards, Obtained with the Scanning Tunneling Microscope Operated at Atmospheric Air Pressure"
N. García, A.M. Baró, R. Miranda, H. Rohrer, Ch. Gerber R. García Cantú and J.L. Peña
Metrologia 21, 135-138 (1985).
14. "Determination of Surface Topography of Biological Specimens at High Resolution by Scanning Tunneling Microscopy"
A.M. Baró, R. Miranda, J. Alamán, N. García, G.K. Binnig, H. Rohrer, Ch. Gerber and J.L. Carrascosa
Nature 315, 253-254 (1985).
15. "Revisiting the 7×7 Reconstruction of Si (111)"
G.K. Binnig, H. Rohrer, F. Salvan, Ch. Gerber and A. Baró
Surf. Sci. 157(2/3), L373-L378 (1985).
16. "Energy-Dependent State-Density Corrugation of a Graphite Surface as seen by Scanning Tunneling Microscopy"
G.K. Binnig, H. Fuchs, Ch. Gerber, H. Rohrer, E. Stoll and E. Tosatti
Europhys. Lett. 1(1), 31-36 (1986).
17. "Scanning Tunneling Microscope Combined with a Scanning Electron Microscope"
Ch. Gerber, G.K. Binnig, H. Fuchs, O. Marti and H. Rohrer
Rev. Sci. Instrum. 57(2), 221-224 (1986).
18. "A Scanning Tunneling Microscope with UHV Transfer of Tips and Samples"
S. Chiang, R.J. Wilson and Ch. Gerber
Bull. Am. Phys. Soc. 31(3), 227 (1986).
19. "An Image of a Lipid Bilayer at Molecular Resolution by Scanning Tunneling Microscopy"
J. Rabe, Ch. Gerber, J.D. Swalen, D.P.E. Smith, A. Bryant and C.F. Quate
Bull. Am. Phys. Soc. 31(3), 289 (1986).

20. "Atomic Force Microscope"
G.K. Binnig, C.F. Quate and Ch. Gerber
Phys. Rev. Lett. 56(9), 930-933 (1986).
21. "Images of a Lipid Bilayer at Molecular Resolution by STM"
D.P.E. Smith, A. Bryant, C.F. Quate, J.P. Rabe, Ch. Gerber and J.D. Swalen
Proc. Nat'l Acad. Sci. USA 84, 969-972 (1987).
22. "Atomic Resolution with Atomic Force Microscope"
G.K. Binnig, Ch. Gerber, E. Stoll, T.R. Albrecht and C.F. Quate
Europhys. Lett. 3(12), 1281-1286 (1987).
23. "Atomic Resolution with Atomic Force Microscope"
G.K. Binnig, Ch. Gerber, E. Stoll, T.R. Albrecht and C.F. Quate
Surface Sci. (Special Issue) 189/190, 1-6 (1987).
24. "Smectic Liquid Crystal Monolayers on Graphite Observed by Scanning Tunneling Microscopy"
D.P.E. Smith, H. Hörber, Ch. Gerber and G. Binnig
Science (Reports) 245(4913), 43-45 (1989).
25. "Characterization of a Covalently Bound Phospholipid on a Graphite Substrate by X-Ray Photoelectron Spectroscopy and Scanning Tunneling Microscopy"
W.M. Heckl, K.M.R. Kallury, M. Thompson, Ch. Gerber, H.J.K. Hörber and G. Binnig
Langmuir 5(6), 1433-1435 (1989).
26. "Smectic Liquid Crystal Monolayers on Graphite Observed by Scanning Tunneling Microscopy"
D.P.E. Smith, H. Hörber, Ch. Gerber and G. Binnig
Science 245, 43-45 (1989).
27. "Imaging of Cell Membraneous and Cytoskeletal Structures with a Scanning Tunneling Microscope"
J.P. Ruppersberg, J.K.H. Hörber, Ch. Gerber and G. Binnig
FEBS Lett. 257(2), 460-464 (1989).
28. "The STM Tip as a Preparation Tool"
J.K. Hörber, D.P.E. Smith, Ch. Gerber and G. Binnig
Engineering Foundation Conf. on Molecular Electronics—Science and Technology, Keauhou Kona, Hawaii, Feb. 19-24, 1989, edited by A. Aviram (United Engineering Trustees, New York, 1989), pp. 39-48.
29. "Screw Dislocations in High- T_c Films"
Ch. Gerber, D. Anselmetti, J.G. Bednorz, J. Mannhart and D.G. Schlom
Nature 350(6316), 279-280 (1991).

30. "A Low-Temperature Atomic Force/Scanning Tunneling Microscope for Ultrahigh Vacuum"
F.J. Giessibl, Ch. Gerber and G. Binnig
J. Vac. Sci. Technol. B 9(2), Part II, 984-988 (1991).

31. "Observation of Screw Dislocations in Sputtered $\text{YBa}_2\text{Cu}_3\text{O}_7\text{-d}$ Films"
D.G. Schlom, D. Anselmetti, J.G. Bednorz, Ch. Gerber, J. Mannhart and K.A. Müller
Physica C 185-189, Part III, 2007-2008 (1991).

32. "Screw Dislocation Mediated Growth of Sputtered and Laser-Ablated $\text{YBa}_2\text{Cu}_3\text{O}_7\text{-d}$ Films"
D.G. Schlom, D. Anselmetti, J.G. Bednorz, R.F. Broom, A. Catana, T. Frey,
Ch. Gerber, H.-J. Güntherodt, H.P. Lang and J. Mannhart
Z. Phys. B – Condensed Matter 86(2), 163-175 (1992).

33. "Correlation between J_c Screw Dislocation Density in Sputtered $\text{YBa}_2\text{Cu}_3\text{O}_7\text{-d}$ Films"
J. Mannhart, D. Anselmetti, J.G. Bednorz, A. Catana, Ch. Gerber, K.A. Müller
and D.G. Schlom
Z. Phys. B – Condensed Matter 86(2), 177-181 (1992).

34. "Pinning Centers in $\text{YBa}_2\text{Cu}_3\text{O}_7\text{-d}$ Films"
J. Mannhart, D. Anselmetti, J.G. Bednorz, Ch. Gerber, K.A. Müller and D.G. Schlom
Supercond. Sci. Technol. 5, S125-S128, (1992).

35. "Compact, Combined Scanning Tunneling/Force Microscope"
D. Anselmetti, Ch. Gerber, B. Michel, H.-J. Güntherodt and H. Rohrer
Rev. Sci. Instrum. 63(5), 3003-3006 (1992).

36. "Large Electric Field Effects in $\text{YBa}_2\text{Cu}_3\text{O}_7\text{-d}$ Films Containing Weak Links"
J. Mannhart, J. Ströbel, J.G. Bednorz and Ch. Gerber
Appl. Phys. Lett. 62(6), 630-632 (1993).

37. "Critical Currents in $\text{Y}_1\text{Ba}_2\text{Cu}_3\text{O}_7\text{-d}$ Thin Films Containing Screw Dislocations"
H. Douwes, P.H. Kes, Ch. Gerber and J. Mannhart
Cryogenics 33(5), 486-491 (1993).

38. "Electrochemical Oxidation of La_2CuO_4 Thin Films Grown by Molecular Beam Epitaxy"
J.-P. Locquet, C. Gerber, A. Cretton, Y. Jaccard, E. Williams and E. Mächler
Appl. Phys. A 57, 211-215 (1993).

39. "Surface Outgrowths on Sputtered $\text{YBa}_2\text{Cu}_3\text{O}_{7-x}$ Films: A Combined Atomic Force Microscopy and Transmission Electron Microscopy Study"
A. Catana, J.G. Bednorz, Ch. Gerber, J. Mannhart and D.G. Schlom
Appl. Phys. Lett. 63(4), 553-555 (1993).

40. "Deformation-Free Topography from Combined Scanning Force and Tunnelling Experiments"
D. Anselmetti, Ch. Gerber, B. Michel, H. Wolf, H.-J. Güntherodt and H. Rohrer
Europhys. Lett. 23(6), 421-426 (1993).

41. "Observation of a New $\text{Au}(111)$ Reconstruction at the Interface of an Absorbed C_{60} Overlayer"
J.K. Gimzewski, S. Modesti, Ch. Gerber and R.R. Schlittler
Chem. Phys. Lett. 213(3/4), 401-406 (1993).

42. "Origin of Cu-Rich Precipitate Formation on Superconducting Films: A Competition between Nucleation, Oxidation, and Growth Kinetics"
J.-P. Locquet, Y. Jaccard, C. Gerber and E. Mächler
Appl. Phys. Lett. 63(10), 1426-1428 (1993).

43. Defect-Mediated Growth of $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$ Films"
D.G. Schlom, D. Anselmetti, J.G. Bednorz, Ch. Gerber and J. Mannhart
Mat. Res. Soc. Symp. Proc. 280, 341-344 (1993).

44. "Scanning Tunneling Microscope Combined with a Scanning Electron Microscope"
Ch. Gerber, G.K. Binnig, H. Fuchs, O. Marti and H. Rohrer
in *Scanning Tunneling Microscopy*, edited by H. Neddermeyer (Kluwer, Dordrecht, 1993), Vol. 6, pp. 79-82.

45. "Block-by-Block Deposition: A New Growth Method for Complex Oxide Thin Films"
J.-P. Locquet, A. Catana, E. Mächler, C. Gerber and J.G. Bednorz
Appl. Phys. Lett. 64(3), 372-374 (1994).

46. "Observation of a Chemical Reaction Using a Micromechanical Sensor"
J.K. Gimzewski, Ch. Gerber, E. Meyer and R.R. Schlittler
Chem. Phys. Lett. 217(5/6), 589-594 (1994).

47. "The Characterisation of Thin Films of MBE Grown $\text{La}_{2-x}\text{Sr}_x\text{CuO}_4\pm\delta$ by Transmission Electron Microscopy"
E.J. Williams, J.-P. Locquet, E. Mächler, Y. Jaccard, A. Cretton, R.F. Broom, C. Gerber, T. Schneider, Ø. Fischer and P. Martinoli
Proc. Electron Microscopy and Analysis Group Conf. "EMAG '93," Liverpool, UK, Sept. 14-17, 1993 (IOP, Bristol, 1994), Inst. Phys. Conf. Ser. No. 138, Section 7, pp. 329-332.

48. "Electric Field Effects in $\text{YBa}_2\text{Cu}_3\text{O}_7\text{-d}$ Films"
J. Mannhart, J.G. Bednorz, Ch. Gerber, D.G. Schlom and J. Ströbel
Physica B – Condensed Matter 194-196, Part I, 1353-1354 (1994).

49. "Epitaxial Growth of Cuprate Superconductors from the Gas Phase"
D.G. Schlom, D. Anselmetti, J.G. Bednorz, Ch. Gerber and J. Mannhart
J. Crystal Growth 137(1/2), 259-267 (1994).

50. "High- T_c Thin Films. Growth Modes–Structure–Applications"
J. Mannhart, J.G. Bednorz, A. Catana, C. Gerber and D.G. Schlom
Proc. Erice School on Materials and Crystallographic Aspects of High- T_c
Superconductivity, Erice, Italy, May 17-29, 1993, edited by E. Kaldus (Kluwer,
Dordrecht, 1994), pp. 453-470.

51. "Dielectric Properties of Sputtered SrTiO_3 Films"
H.-M. Christen, J. Mannhart, E.J. Williams and C. Gerber
Phys. Rev. B 49(17), 12095-12104 (1994).

52. "Combined Scanning Tunneling and Force Microscopy"
D. Anselmetti, A. Baratoff, H.-J. Güntherodt, Ch. Gerber, B. Michel and H.
Rohrer
J. Vac. Sci. Technol. B 12(3), 1677-1680 (1994).

53. "Characterization of MBE-Grown Ultrathin Films in the $\text{La}_{2-x}\text{Sr}_x\text{CuO}_4\pm\delta$ System"
Y. Jaccard, A. Cretton, E.J. Williams, J.-P. Locquet, E. Mächler, C. Gerber, T.
Schneider, Ø. Fischer and P. Martinoli
Proc. SPIE Oxide Superconductor Physics and Nano-Engineering, Los
Angeles, CA, Jan. 22-28, 1994 (SPIE, Bellingham, 1994), Vol. 2158, pp. 200-
210.

54. "Domain and Molecular Superlattice Structure of Dodecanethiol Self-Assembled
on Au(111)"
D. Anselmetti, A. Baratoff, H.-J. Güntherodt, E. Delamarche, B. Michel, Ch.
Gerber, H. Kang, H. Wolf and H. Ringsdorf
Europhys. Lett. 27(5), 365-370 (1994).

55. "Real-Space Observation of Nanoscale Molecular Domains in Self-Assembled
Monolayers"
E. Delamarche, B. Michel, Ch. Gerber, D. Anselmetti, H.-J. Güntherodt, H.
Wolf and H. Ringsdorf
Langmuir 10(9), 2869-2871 (1994).

56. "Thermal Stability of Self-Assembled Monolayers"
E. Delamarche, B. Michel, H. Kang and Ch. Gerber
Langmuir 10(11), 4103-4108 (1994).

57. "Photothermal Spectroscopy with Femtojoule Sensitivity Based on Micromechanics"
J.R. Barnes, R.J. Stephenson, M.E. Welland, Ch. Gerber and J.K. Gimzewski
Nature 372(6501), 79-81 (1994).

58. "A Femtojoule Calorimeter Using Micromechanical Sensors"
J.R. Barnes, R.J. Stephenson, C.N. Woodburn, S.J. O'Shea, M.E. Welland, T. Rayment, J.K. Gimzewski and Ch. Gerber
Rev. Sci. Instrum. 65(12), 3793-3798 (1994).
Erratum: Rev. Sci. Instrum. 66(4), 3083 (1995).

59. "Micromechanical Heat Sensor: Observation of a Chemical Reaction, Photon and Electrical Heat Pulses"
J.K. Gimzewski, C. Gerber, E. Meyer and R.R. Schlittler
Proc. NATO ASI in Forces in Scanning Probe Methods, Schluchsee, Germany, March 7-18, 1994, edited by H.-J. Güntherodt et al. (Kluwer, Dordrecht, 1994), Vol. 286, pp. 123-131.

60. "End-Group-Dominated Molecular Order in Self-Assembled Monolayers"
H. Wolf, H. Ringsdorf, E. Delamarche, T. Takami, H. Kang, B. Michel, Ch. Gerber, M. Jaschke, H.-J. Butt and E. Bamberg
J. Phys. Chem. 99, 7102-7109 (1995).

61. "Micromechanical Calorimeter with Picojoule-Sensitivity"
E. Meyer, J.K. Gimzewski, Ch. Gerber and R.R. Schlittler
Proc. NATO ARW in The Ultimate Limits of Fabrication and Measurement, Cambridge, UK, April 5-8, 1994, edited by M.E. Welland and J.K. Gimzewski (Kluwer, Dordrecht, 1995), Vol. 292, pp. 89-95.

62. "Recognition of Individual Tail Groups in Self-Assembled Monolayers"
T. Takami, E. Delamarche, B. Michel, Ch. Gerber, H. Wolf and H. Ringsdorf
Langmuir 11(10), 3876-3881 (1995).

63. "Immobilization of Antibodies on a Photoactive Self-Assembled Monolayer on Gold"
E. Delamarche, G. Sundarababu, H. Biebuyck, B. Michel, Ch. Gerber, H. Sigrist, H. Wolf, H. Ringsdorf, N. Xanthopoulos and H.J. Mathieu
Langmuir 12(8), 1997-2006 (1996).

64. "Atomic Resolution in Dynamic Force Microscopy across Steps on Si(111)7 × 7"
R. Lüthi, E. Meyer, M. Bammerlin, A. Baratoff, T. Lehmann, L. Howald, Ch. Gerber and H.-J. Güntherodt
Z. Phys. B 100(2), 165-167 (1996).

65. "Thermal Analysis Using a Micromechanical Calorimeter"
R. Berger, Ch. Gerber, J.K. Gimzewski, E. Meyer and H.-J. Güntherodt
Appl. Phys. Lett. 69(1), 40-42 (1996).

66. "Basic Aspects of High- T_c Grain Boundary Devices"
J. Mannhart, H. Hilgenkamp, B. Mayer, Ch. Gerber, J.R. Kirtley, K.A. Moler
and M. Sigrist
J. Physique IV 6(21), C3-329–C3-334 (1996).

67. "Implications of $d_{x^2-y^2}$ Symmetry for Grain-boundary-based High- T_c Devices"
H. Hilgenkamp, J. Mannhart, B. Mayer, Ch. Gerber, J.R. Kirtley, K.A. Moler
and M. Sigrist
Proc. 3rd HTS Workshop on Digital Applications, Josephson Junctions and 3-Terminal Devices, Univ. of Twente, Enschede, The Netherlands, April 22-24, 1996, edited by R. Moerman (Univ. of Twente, Enschede, 1996), pp. 66-72.

68. "Scanning Probe Microscopy of Polymeric Methyltrioxorhenium"
M.R. Matter, W.A. Herrmann, R. Berger, Ch. Gerber and J.K. Gimzewski
Adv. Mat. 8(8), 654-657 (1996).

69. "Golden Interfaces: The Surface of Self-Assembled Monolayers"
E. Delamarche, B. Michel, H.A. Biebuyck and Ch. Gerber
Adv. Mat. 8(9), 719-729 (1996).

70. "Generation of Magnetic Flux by Single Grain Boundaries of $YBa_2Cu_3O_{7-x}$ "
J. Mannhart, H. Hilgenkamp, B. Mayer, Ch. Gerber, J.R. Kirtley, K.A. Moler
and M. Sigrist
Phys. Rev. Lett. 77(13), 2782-2785 (1996).

71. "Growth, Microstructure, and Electrochemical Oxidation of MBE-Grown c-axis La_2CuO_4 Thin Films"
F. Arrouy, J.-P. Locquet, E.J. Williams, E. Mächler, R. Berger, Ch. Gerber, Ch. Monroux, J.C. Grenier and A. Wattiaux
Phys. Rev. B 54(10), 7512-7520 (1996).

72. "Nanometers, Picowatts, Femtojoules: Thermal Analysis and Optical Spectroscopy Using Micromechanics"
R. Berger, Ch. Gerber and J.K. Gimzewski
J. Analytical Methods & Instrum., Special Issue μ TAS'96, 74-77 (1996).

73. "Magnetic Flux Distribution in Grain and Twin Boundaries in YBCO"
K.A. Moler, J.R. Kirtley, J. Mannhart, H. Hilgenkamp, B. Mayer, Ch. Gerber, R. Liang, D.A. Bonn and W.N. Hardy
Proc. 10th Anniversary HTS Workshop on Physics, Materials and Applications, Houston, TX, March 12-16, 1996, edited by B. Batlogg C.W. Chu, W.K. Chu, D.U. Gubser and K.A. Müller (World Scientific, Singapore, 1996), pp. 232-235.

74. "Single Grain Boundaries Josephson Junctions—New Insights from Basic Experiments"
J. Mannhart, H. Hilgenkamp, B. Mayer, Ch. Gerber, J. Kirtley, K.A. Moler and M. Sigrist
Proc. 10th Anniversary HTS Workshop on Physics, Materials and Applications, Houston, TX, March 12-16, 1996, edited by B. Batlogg C.W. Chu, W.K. Chu, D.U. Gubser and K.A. Müller (World Scientific, Singapore, 1996), pp. 236-239.

75. "Nanojoule Thermal Transfer in Micromechanical Heterostructures"
R. Berger, Ch. Gerber, J.K. Gimzewski, E. Meyer and H.-J. Güntherodt
in Microelectromechanical Systems "MEMS," Proc. 1996 Int'l Mechanical Engineering Congress and Exposition, Atlanta, GA, Nov. 17-22, 1996 (American Soc. Mech. Eng., New York, 1996), DSC-Vol. 59, pp. 49-53.

76. "Micromechanical Sensors: A Road to Femtoscale Science"
R. Berger, Ch. Gerber and J.K. Gimzewski
Proc. 10th Eurosensors Conf. on Solid-State Transducers, Leuven, Belgium, Sept. 8-11, 1996, edited by R. Puers (Catholic Univ., Leuven, 1996), Vol. 1, pp. 17-22.

77. "Micromechanics: A Toolbox for Femtoscale Science: 'Towards a Laboratory on a Tip'"
R. Berger, Ch. Gerber, H.P. Lang and J.K. Gimzewski
Microelec. Eng. 35, 373-379 (1997).

78. "Semiconducting Epitaxial Films of Metastable $\text{SrRu}_{0.5}\text{Sn}_{0.5}\text{O}_3$ Grown by Pulsed Laser Deposition"
H.-M. Christen, L.A. Boatner, J.D. Budai, M.F. Chisholm, L.A. Gea, D.P. Norton, Ch. Gerber and M. Urbanik
Appl. Phys. Lett. 70(16), 2147-2149 (1997).

79. "Scanning Force Microscopy on Albite Cleavage Surfaces"
D. Nyfeler, R. Berger and Ch. Gerber
Schweizer Mineral. & Petrolog. Mitteilungen 77, 21-26 (1997).

80. "Surface Stress in the Self-Assembly of Alkanethiols on Gold"
R. Berger, E. Delamarche, H.P. Lang, Ch. Gerber, J.K. Gimzewski, E. Meyer and H.-J. Güntherodt
Science 276(5321), 2021-2024 (1997).

81. "True Atomic Resolution on the Surface of an Insulator via Ultrahigh Vacuum Dynamic Force Microscopy"
N. Bammerlin, R. Lüthi, E. Meyer, A. Baratoff, J. Lü, M. Guggisberg, Ch. Gerber, L. Howald and H.-J. Güntherodt
Probe Microscopy 1(1), 3-9 (1997).

82. "Influence of $d_{x^2-y^2}$ Symmetry on Device Applications of High- T_c Grain Boundary Junctions"
H. Hilgenkamp, J. Mannhart, B. Mayer, Ch. Gerber, J.R. Kirtley and K.A. Moler
IEEE Trans. Appl. Supercond. 7(2), 3670-3673 (1997).

83. "Implications of $d_{x^2-y^2}$ Symmetry Component of the Superconducting Order Parameter on High- T_c Josephson Devices"
J. Mannhart, H. Hilgenkamp, Ch. Gerber, J.R. Kirtley and K.A. Moler
Proc. 9th Int'l Symp. on Superconductivity (ISS'96), Sapporo, Japan, Oct. 21-24, 1996, Advances in Superconductivity, edited by S. Nakajima and M. Murakami (Springer, Tokyo, 1997), Vol. 2, pp. 1129-1134.

84. "Symmetry of the Order Parameter: Implications for the Transport Properties of Grain Boundaries"
J. Mannhart, H. Hilgenkamp and Ch. Gerber
Physica C 282-287(I), 132-135 (1997).

85. "Ultrahigh Vacuum Atomic Force Microscopy: True Atomic Resolution"
R. Lüthi, E. Meyer, M. Bammerlin, A. Baratoff, L. Howald, Ch. Gerber and H.-J. Güntherodt
Surf. Rev. Lett. 4(5) 1025-1029 (1997).

86. "Sequential Position Readout from Arrays of Micromechanical Cantilever Sensors"
H.P. Lang, R. Berger, C. Andreoli, J. Brugger, M. Despont, P. Vettiger, Ch. Gerber, J.K. Gimzewski, J.P. Ramseyer, E. Meyer and H.-J. Güntherodt
Appl. Phys. Lett. 72(3), 383-385 (1998).

87. "Local Determination of the Stacking Sequence of Layered Materials"
J. Fompeyrine, R. Berger, H. P. Lang, J. Perret, E. Mächler, Ch. Gerber, and J.-P. Locquet
Appl. Phys. Lett. 72(14), 1697-1699 (1998).

88. "Integration of Silicon Micromechanical Arrays with Molecular Monolayers for Miniaturized Sensor Systems"
R. Berger, H.P. Lang, E. Delamarche, Ch. Gerber, J.K. Gimzewski, C. Andreoli, J. Brugger, M. Despont and P. Vettiger
in Sensors and their Applications VIII, Proc. 8th Conf., Glasgow, Scotland, Sept. 7-10, 1997, edited by A.T. Augousti and N.M. White (IOP, London, 1997), pp. 71-76.

89. "Transduction Principles and Integration of Chemical Sensors into a Micromechanical Array Device"
R. Berger, H.P. Lang, J.P. Ramseyer, F. Battiston, J.H. Fabian, L. Scandella, C. Andreoli, J. Brugger, M. Despont, P. Vettiger, E. Meyer, H.-J. Güntherodt, Ch. Gerber and J.K. Gimzewski
in Sensor Technology in the Netherlands: State of the Art, Proc. Dutch Sensor Conf. Univ. of Twente, March 2-3, 1998, Enschede, The Netherlands, edited by A. van den Berg and P. Bergveld (Kluwer, Dordrecht, 1998), pp. 33-42.

90. "Implications of a $d(x^2-y^2)$ Symmetry Component of the Order Parameter on Potential High- T_c Devices"
H. Hilgenkamp, J. Mannhart, B. Mayer, Ch. Gerber, J.R. Kirtley and K.A. Moler in Advances in Superconductivity: New Materials, Critical Currents and Devices, Proc. Int'l Symp., Mumbai, India, Sept. 17-20, 1996, edited by R. Pinto, S.K. Malik, A.K. Grover and P. Ayyub (New Age Int'l Pub., New Delhi, 1998), pp. 358-365.

91. "Surface Stress in the Self-Assembly of Alkanethiols on Gold Probed by a Force Microscopy Technique"
R. Berger, E. Delamarche, H.P. Lang, Ch. Gerber, J.K. Gimzewski, E. Meyer and H.-J. Güntherodt
Appl. Phys. A 66, S55-S59 (1998).

92. "A Chemical Sensor Based on a Micromechanical Cantilever Array for the Identification of Gases and Vapors"
H.P. Lang, R. Berger, F. Battiston, J.-P. Ramseyer, E. Meyer, C. Andreoli, J. Brugger, P. Vettiger, M. Despont, T. Mezzacasa, L. Scandella, H.-J. Güntherodt, Ch. Gerber and J.K. Gimzewski
Appl. Phys. A 66 S61-S64 (1998).

93. "Dynamic SFM with True Atomic Resolution on Alkali Halide Surfaces"
M. Bammerlin, R. Lüthi, E. Meyer, A. Baratoff, J. Lü, M. Guggisberg, C. Loppacher, Ch. Gerber and H.-J. Güntherodt
Appl. Phys. A 66, S293-S294 (1998).

94. "Micromechanical Thermogravimetry"
R. Berger, H.P. Lang, Ch. Gerber, J.K. Gimzewski, J.H. Fabian, L. Scandella, E. Meyer and H.-J. Güntherodt
Chem. Phys. Lett. 294(5), 363-369 (1998).

95. "Local Determination of the Stacking Sequence of Layered Materials"
J. Fompeyrine, R. Berger, H.P. Lang, J. Perret, E. Maechler, Ch. Gerber and J.-P. Locquet
Appl. Phys. Lett. 72(14), 1697-1699 (1998).

96. "Combination of Single Crystal Zeolites and Microfabrication: Two Applications Towards Zeolite Nanodevices"
L. Scandella, G. Binder, T. Mezzacasa, J. Gobrecht, R. Berger, H.P. Lang, Ch. Gerber, J.K. Gimzewski, J.H. Koegler and J.C. Jansen
Microporous and Mesoporous Materials 21, 403-409 (1998).

97. "An Electronic Nose Based on a Micromechanical Cantilever Array"
H.P. Lang, F.M. Battiston, M.K. Baller, R. Berger, J.-P. Ramseyer, P. Fornaro, E. Meyer, H.-J. Güntherodt, C. Andreoli, J. Brugger, M. Despont, P. Vettiger, J.-H. Fabian, T. Mezzacasa, L. Scandella, Ch. Gerber and J.K. Gimzewski
Micro Total Analysis Systems, edited by D.J. Harrison and A. van den Berg, (Kluwer, Dordrecht, 1998) pp. 57-60.

98. "Micromechanical Thermogravimetry on Single Zeolite Crystals"
J.-H. Fabian, R. Berger, H.P. Lang, Ch. Gerber, J.K. Gimzewski, J. Gobrecht, E. Meyer and L. Scandella
Micro Total Analysis Systems, edited by D.J. Harrison and A. van den Berg, (Kluwer, Dordrecht, 1998) pp. 117-120.

99. "Local Determination of the Terminating Layer of SrTiO_3 "
J. Fompeyrine, R. Berger, Ch. Gerber, J. Perret, J.W. Seo and J.-P. Locquet in *Superconducting and Related Oxides: Physics and Nanoengineering III*, Proc. SPIE Int'l Symp. on Optical Science, Engineering, and Instrumentation, San Diego, CA, July 19-24, 1998, edited by D. Pavuna and I. Bozovic (SPIE, Bellingham, 1998) Vol. 3481, pp. 274-279.

100. "The Nanomechanical NOSE"
H.P. Lang, M.K. Baller, F.M. Battiston, J. Fritz, R. Berger, J.P. Ramseyer, P. Fornaro, E. Meyer, H.-J. Güntherodt, J. Brugger, U. Drechsler, H. Rothuizen, M. Despont, P. Vettiger, Ch. Gerber and J.K. Gimzewski
in *Technical Digest of 12th IEEE Int'l Micro Electro Mechanical Systems Conf., "MEMS '99,"* Orlando, FL, Jan. 17-21, 1999 (IEEE, Piscataway, 1999), pp. 9-13.

101. "An Artificial Nose Based on a Micromechanical Cantilever Array"
H.P. Lang, M.K. Baller, R. Berger, Ch. Gerber, J.K. Gimzewski, F.M. Battiston, P. Fornaro, J.P. Ramseyer, E. Meyer and H.J. Güntherodt
Anal. Chim. Acta 393, 59-65 (1999).

102. "A Cantilever Array-Based Artificial Nose"
M.K. Baller, H.P. Lang, J. Fritz, Ch. Gerber, J.K. Gimzewski, U. Drechsler, H. Rothuizen, M. Despont, P. Vettiger, F.M. Battiston, J.P. Ramseyer, P. Fornaro, E. Meyer and H.-J. Güntherodt
Ultramicroscopy 82, 1-9 (2000).

103. "Low Temperature Scanning Force Microscopy of the Si(111)-(7 × 7) Surface"
M.A. Lantz, H.J. Hug, P.J.A. van Schendel, R. Hoffmann, S. Martin, A. Baratoff, A. Abdurixit, H.-J. Güntherodt and Ch. Gerber
Phys. Rev. Lett. 84(12), 2642-2645 (2000).

104. "Translating Biomolecular Recognition into Nanomechanics"
J. Fritz, M.K. Baller, H.P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, Ch. Gerber and J.K. Gimzewski
Science 288, 316-318 (2000).

105. "Reproducible Switching Effect in Thin Oxide Films for Memory Applications"
A. Beck, J.G. Bednorz, Ch. Gerber, C. Rossel and D. Widmer
Appl. Phys. Lett. 77(1), 139-141 (2000).

106. "Stress at the Solid-Liquid Interface of Self-Assembled Monolayers on Gold Investigated with a Nanomechanical Sensor"
J. Fritz, M.K. Baller, H.P. Lang, T. Strunz, E. Meyer, H.-J. Güntherodt, E. Delamarche, Ch. Gerber and J.K. Gimzewski
Langmuir 16(25), 9694-9696 (2000)
(ASAP Article web release date: Nov. 10, 2000).

107. "A Chemical Sensor Based on a Microfabricated Cantilever Array with Simultaneous Resonance-Frequency and Bending Readout"
F.M. Battiston, J.-P. Ramseyer, H.P. Lang, M.K. Baller, Ch. Gerber, J.K. Gimzewski, E. Meyer and H.-J. Güntherodt
Sensors and Actuators B 77, 122-131 (2001).

108. "Current-Driven Insulator-Conductor Transition and Nonvolatile Memory in Chromium-Doped SrTiO₃ Single Crystals"
Y. Watanabe, J.G. Bednorz, A. Bietsch, Ch. Gerber, D. Widmer, S. Wind and A. Beck
Appl. Phys. Lett. 78(23), 3738-3740 (2001).

109. "Multiple Label-free Biodetection and Quantitative DNA-Binding Assays on a Nanomechanical Cantilever Array"
R. McKendry, J. Zhang, Y. Arntz, T. Strunz, M. Hegner, H.P. Lang, M.K. Baller, U. Certa, E. Meyer, H.-J. Güntherodt and Ch. Gerber
Proc. National Acad. Sci. (PNAS) 99(15), 9783-9788 (2002).

110. "Nanomechanics from Atomic Resolution to Molecular Recognition Based on Atomic Force Microscopy Technology"
H.P. Lang, M. Hegner, E. Meyer and Ch. Gerber
Nanotechnology 12, R29-R39 (2002).

111. "Nanotechnology - The Link to Biology and Chemistry"
H.P. Lang, M. Hegner and Ch. Gerber,
Chimia, 56, 515-519 (2002).
112. "Label-free Protein Assay based on a Nanomechanical Cantilever Array"
Y. Arntz, J.D. Seelig, H.P. Lang, J. Zhang, P. Hunziker, J.P. Ramseyer, E. Meyer, M. Hegner and Ch. Gerber
Nanotechnology 14(1), 86-90 (2003).
113. "Biological Single Molecule Applications and Advanced Biosensing"
M. Hegner, Ch. Gerber, Y. Arntz, J. Zhang, P. Bertoncini, S. Husale, H.P. Lang and W. Grange
in Emerging Technologies in Protein and Genomic Material Analysis, Journal of Chromatography Library, vol. 68, G.A. Marko-Varga, P.L. Oroszlan (Eds) (Elsevier, Amsterdam, 2003), Chap. 11., pp 241-263.
114. "Chemical Analysis and Molecular Recognition with Cantilever Arrays"
Ch. Gerber
in Proc. ASIA SPM4 Symp. on Nanotechnology, 2003, Taipei, Taiwan.
115. "Domain Imaging Utilizing the Surface Layer and Observation of Single-Unit-Cell Atomic Steps and 180-degree Domains on As-Grown BaTiO₃ by AFM"
Yukio Watanabe, H.P. Lang and Ch. Gerber
in Proc. 10th European Ferroelectricity Meeting "EMF 2003," Cambridge, United Kingdom.
116. "Switchable Cantilever Fabrication for a Novel Time-of-Flight Scanning Force Microscope"
D.-W. Lee, M. Despont, U. Drechsler, Ch. Gerber, P. Vettiger, Adrian Wetzel, Roland Bennewitz and Ernst Meyer
Microelectronic Eng. 67-68, 635-643 (2003).
117. "A Switchable Cantilever for a Novel Time-of-Flight Scanning Force Microscope"
D.-W. Lee, M. Despont, U. Drechsler, Ch. Gerber, P. Vettiger, Adrian Wetzel, Roland Bennewitz and Ernst Meyer
In Digest of Technical Papers "Transducers 2003," Vol. 2 (IEEE, Piscataway, NJ, 2003), pp. 1146-1147.
118. "Inkjet Deposition of Alkanethiolate Monolayers and DNA Oligonucleotides on Gold: Control of Spot Uniformity by Wet Etching"
A. Bietsch, M. Hegner, H.P. Lang and Ch. Gerber
Langmuir 20(12), 5119-5122 (2004).
119. "Rapid Functionalization of Cantilever Array Sensors by Inkjet Printing"
A. Bietsch, J. Zhang, M. Hegner, H.P. Lang and Ch. Gerber
Nanotechnology 15(8), 873-880 (2004).

120. "Temperature Dependence of the Force Sensitivity of Silicon Cantilevers"
U. Gysin, S. Rast, P. Ruff, E. Meyer, D.W. Lee, P. Vettiger and Ch. Gerber
Phys. Rev. B 69, 045403-1–045403-6 (2004).

121. "Real-Time Mass Sensing by Nanomechanical Resonators in Fluid"
M.K. Ghatkesar, V. Barwich, T. Braun, A.H. Bredekamp, U. Drechsler, M.
Despont, H.P. Lang, M. Hegner, Ch. Gerber
Proc. Third IEEE Conf. on Sensors 2004, Vienna, Austria, October 2004, pp.
1060-1063 (IEEE, 2004)

122. "Observation of Individual Molecules Trapped on a Nanostructured Insulator"
L. Nony, E. Gnecco, A. Baratoff, A. Alkauskas, R. Bennewitz, O. Pfeiffer, S.
Maier, A. Wetzel, E. Meyer and Ch. Gerber
Nano Lett. 4(11), 2185-2189 (2004).

123. "Cantilever Array Sensors"
H.P. Lang, M. Hegner, Ch. Gerber
Materials Today 8(4), 30-36 (2005).

124. "A Label-free Immunosensor Array using Single-chain Antibody Fragments"
N. Backmann, C. Zahnd, F. Huber, A. Bietsch, A. Plückthun, H.P. Lang, H.-J.
Güntherodt, M. Hegner, Ch. Gerber,
Proc. Nat. Acad. Sci. USA, 102, 14587-14592 (2005).

125. "Nanomechanical Cantilever Array Sensors in (Bio-)Chemistry and Medicine"
H.P. Lang, D. Schmid, M.K. Ghatkesar, T. Braun, N. Backmann, F. Huber, J.-
P. Ramseyer, P. Hunziker, M. Hegner, Ch. Gerber,
Proceedings Nano Europe 2005, St. Gallen (Switzerland).

126. "Micromechanical Mass Sensors for Biomolecular Detection in a Physiological
Environment"
T. Braun, V. Barwich, M.K. Ghatkesar, A.H. Bredekamp, Ch. Gerber, M.
Hegner, H.P. Lang,
Phys. Rev. E 72, 031907 (2005).

127. "Label Free Analysis of Transcription Factors using Microcantilever Arrays"
F. Huber, M. Hegner, Ch. Gerber, H.-J. Güntherodt, H.P. Lang,
Biosensors and Bioelectronics 21, 1599-1605 (2006).

128. "Force Microscopy Experiments with Ultrasensitive Cantilevers"
S. Rast, U. Gysin, P. Ruff, Ch. Gerber, E. Meyer and D. W. Lee
Nanotechnology 17, S189-S194 (2006).

129. "Conformational Change of Bacteriorhodopsin Quantitatively Monitored by Microcantilever Sensors"
T. Braun, N. Backmann, M. Voegtli, A. Bietsch, A. Engel, H.P. Lang, Ch. Gerber and M. Hegner
Biophysical Journal 90, 2970-2977 (2006).

130. "How the doors to the nanoworld were opened" Ch. Gerber and H.P. Lang
Nature Nanotechnology 1, 3-5 (2006).

131. "A tunnelling displacement sensor based on a squeezable molecular bilayer" M. Dorrestijn, A. Bietsch, Ch. Gerber and Ernst Meyer
Nanotechnology 17, 2242–2245 (2006).

132. "Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA" J. Zhang, H. P. Lang, F. Huber, A. Bietsch, W. Grange, U. Certa, R. McKendry, H.-J. Güntherodt, M. Hegner and Ch. Gerber, Nature Nanotechnology, 1, 214-220 (2006).

133. "Chladni Figures Revisited based on Nanomechanics" M. Dorrestijn, A. Bietsch, T. Açıkalın, A. Raman, M. Hegner, E. Meyer and Ch. Gerber
Phys. Rev. Lett., 98, 026102 (2007).

134. "Investigating the Molecular Mechanisms of In-plane Mechanochemistry on Cantilever Arrays" M. Watari, J. Galbraith, H.P. Lang, M. Sousa, M. Hegner, Ch. Gerber, M.A. Horton and R.A. McKendry
J. Am. Chem. Soc, 129, 601-609 (2007).

135. "Editorial: Special issue featuring papers from ICN&T 2006"
Ch. Gerber, M. Hegner, E. Meyer
Nanotechnology, 18, 040201 (2007)

136. "Digital processing of multi-mode nano-mechanical cantilever data"
T. Braun, M.K. Ghatkesar, V. Barwick, N. Backmann, F. Huber, W. Grange, N. Nugaeva, H.P. Lang, J.-P. Ramseyer, Ch. Gerber and M. Hegner
Journal of Physics: Conference Series 61, 341–345 (2007).

137. "Analyzing Gene Expression Using Combined Nanomechanical Cantilever Sensors"
F. Huber, N. Backmann, W. Grange, M. Hegner, Ch. Gerber and H.P. Lang
Journal of Physics: Conference Series 61, 450–453 (2007)

138. "An Artificial Nose Based on Microcantilever Array Sensors"
H.P. Lang, J.-P. Ramseyer, W. Grange, T. Braun, D. Schmid, P. Hunziker, C. Jung, M. Hegner and Ch. Gerber
Journal of Physics: Conference Series 61, 663–667 (2007)

139. "Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA" J. Zhang, H. P. Lang, F. Huber, A. Bietsch, W. Grange, U. Certa, R. McKendry, H.-J. Güntherodt, M. Hegner and Ch. Gerber, *Nature Collections*, special supplement issue 'Nanotechnology in cancer' (June), 8-15 (2007).

140. "Micromechanical sensor for studying heats of surface reactions, adsorption, and cluster deposition processes" J.M Antonietti, J. Gong, V.Habibpour, M.A. Röttgen, S. Abbet, C.J. Harding, M. Arenz, U. Heiz, Ch. Gerber *Rev. Sci. Instrum.* 78, 054101 (2007)

141. "Resonator combined with a piezoelectric actuator for chemical analysis by force microscopy" Y. Kawai, T. Ono, M. Esashi, E. Meyer, Ch. Gerber *Rev. Sci. Instrum.* 78, 063709 (2007)

142. "Capacitive micromachined ultrasonic transducers for chemical detection in nitrogen" K. K. Park, H. J. Lee, G. G. Yaralioglu, A. S. Ergun, Ö. Oralkan, M. Kupnik, C. F. Quate, B. T. Khuri-Yakub, T. Braun, J.-P. Ramseyer, H. P. Lang, M. Hegner, Ch. Gerber, J.K. Gimzewski *Appl. Phys. Lett.* 91, 094102 (2007)

143. "Higher modes of vibration increase mass sensitivity in nanomechanical microcantilevers" M.K. Ghatkesar, V. Barwich, T. Braun, J.-P. Ramseyer, Ch. Gerber, M. Hegner, H.P. Lang, U. Drechsler, M. Despont *Nanotechnology* 18, 445502 (2007)

144. "Processing of kinetic microarray signals" T. Braun, F. Huber, MK Ghatkesar, N. Backmann, HP Lang HP, Ch. Gerber, M. Hegner, *Sens. Act B* 128, 75-82 (2007)

145. "Resonating modes of vibrating microcantilevers in liquid" MK Ghatkesar, T. Braun, V Barwich, JP Ramseyer, Ch. Gerber, M. Hegner, HP Lang, *Appl. Phys. Lett.* 92, 043106 (2008)

146. "Bimaterial microcantilevers as a hybrid sensing platform" Singamaneni S, LeMieux MC, Lang HP, Gerber Ch, Lam Y, Zauscher S, Datskos PG, Lavrik NV, Jiang H, Naik RR, Bunning TJ, Tsukruk VV, *Adv. Mat* 20, 653-680 (2008)

147. "Label-free detection of amyloid growth with microcantilever sensors" T.P.J. Knowles, W. Shu, F. Huber, H.P. Lang, Ch. Gerber, C.M. Dobson, M.E. Welland *Nanotechnology* 19, 384007 (2008)

148. "Analyzing refractive index changes and differential bending in microcantilever arrays" F. Huber, H.P. Lang, M. Hegner, M. Despont, U. Drechsler, Ch. Gerber *Rev. Sci. Instrum.* 79, 086110 (2008)

149. "Microcantilever sensors" H.P. Lang, Ch. Gerber STM and AFM studies on (bio)molecular systems: unravelling the nanoworld, Book series: *Topics in Current Chemistry* 285, 1-27 (2008)

150. "New leverage against superbugs" F. Huber, H.P. Lang, Ch. Gerber *Nature Nanotechnology* 3, 645-646 (2008)

151. "Multi-parameter microcantilever sensor for comprehensive characterization of Newtonian fluids" M.K. Ghatkesar, H.P. Lang, Ch. Gerber, M. Hegner, T. Braun *Sensors and Actuators B-Chemical* 135, 133-138 (2008)

152. "Sub-ppm detection of vapors using piezoresistive microcantilever array sensors" G. Yoshikawa, H.P. Lang, T. Akiyama, L. Aeschimann, U. Staufer, P. Vettiger, M. Aono, T. Sakurai, Ch. Gerber *Nanotechnology* 20, 015501 (2009)

153. "Quantitative time-resolved measurement of membrane protein - ligand interactions using microcantilever array sensors" T. Braun, M.K. Ghatkesar, N. Backmann, W. Grange, P. Boulanger, L. Letellier, H.P. Lang, A. Bietsch, Ch. Gerber, M. Hegner *Nature Nanotechnology* 4, 179-185 (2009)

154. "Towards a modular, versatile and portable sensor system for measurements in gaseous environments based on microcantilevers" H.P. Lang, A. Filippi, A. Tonin, F. Huber, N. Backmann, J. Zhang, Ch. Gerber *Procedia Chemistry* 1, 208-211 (2010)

155. "Up close and personal with atoms and molecules" H.P. Lang and Ch. Gerber *Materials Today* 12, 18-25 (2009)

156. "Cantilever Sensors (book chapter)" H.P. Lang and Ch. Gerber, *Handbook of Nanotechnology* (3rd edition), Springer, pp. 427-452 (2010)

157. "Hautnahe Begegnung mit Atomen und Molekülen" (book chapter) H.P. Lang, Ch. Gerber, in: *nano! Nutzen und Visionen einer neuen Technologie*, Technoseum Mannheim, pp. 78-91 (2010)

158. "Nanomechanical Sensors for Biochemistry and Medicine" (book chapter) H.P. Lang, Ch. Gerber, in: *Handbook of Nanophysics*, Vol. 7: *Nanomedicine and Nanorobotics* (ed. Klaus D. Sattler, Univ. of Hawaii-Manoa, Honolulu, USA), CRC Press, pp. 11-1 - 11-15.

159. "Sensing surface PEGylation with microcantilevers"
N. Backmann, N. Kappeler, T. Braun, F. Huber, H.P. Lang, Ch. Gerber, R.Y.H. Lim *Beilstein J. Nanotechnology* 1, 3-13 (2010).
160. "Capacitive micromachined ultrasonic transducer (CMUT) as a chemical sensor for DMMP detection"
K.K. Park, H. Lee, M. Kupnik, O. Oralkan, J.P. Ramseyer, H.P. Lang, M. Hegner, Ch. Gerber, B.T. Khuri-Jakub *Sens. Act. B* 160, 1120-1127 (2011).
161. "Optimization of DNA hybridization efficiency by pH driven nanomechanical bending"
J. Zhang, H.P. Lang, G. Yoshikawa, Ch. Gerber, *Langmuir* 28, 6494-6501 (2012).
162. "Direct detection of a BRAF mutation in total RNA from melanoma cells using cantilever arrays"
F. Huber, H.P. Lang, N. Backmann, D. Rimoldi, Ch. Gerber, *Nature Nanotechnology* 8, 125-129 (2013)
163. "Development of Robust and Standardized Cantilever Sensors Based on Biotin/Neutravidin Coupling for Antibody"
J. Zhang, H.P. Lang, F. Battiston, N. Backmann, F. Huber, Ch. Gerber *Sensors* 13(4), 5273-5285 (2013)
164. "MEMS technologies in life sciences"
H.P. Lang, F. Huber, J. Zhang, Ch. Gerber
2013 *Transducers & Eurosensors XXVII: 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII)*, 1-4 (2013)
165. "Heinrich Rohrer (1933-2013) Co-Inventor of the scanning tunneling microscope
OBITUARY
Ch. Gerber
Nature 499 (7456), 30 (2013)
166. Photothermal excitation of microcantilevers in liquid: effect of the excitation laser position on temperature and vibrational amplitude
B.A. Bircher, L. Duempelmann, H.P. Lang, Ch. Gerber, Th. Braun *MICRO & NANO LETTERS* 8, 770-774 (2013).
167. "Real-time viscosity and mass density sensors requiring microliter sample volume based on nanomechanical resonators"
B.A. Bircher, L. Duempelmann, K. Renggli, H.P. Lang, Ch. Gerber, N. Bruns, Th. Braun *Analytical Chemistry* 85(18), 8676-83 (2013)

168. "Measuring a response in blood"
F. Huber, H.P. Lang, Ch. Gerber
Nature Nanotechnology 9, 165-167 (2014).
169. H.P. Lang, Ch. Gerber,
Die Erschliessung der Nanowelt,
in: Ingenieure bauen die Schweiz, Band 2, Zürich, 2014, S. 279–303
Verlag Neue Zürcher Zeitung
170. "Nanosensors for cancer detection"
F. Huber, H.P. Lang, J.Y. Zhang, D. Rimoldi, Ch. Gerber
Swiss Medical Weekly 146, w14092
171. "Mechanical control of mitotic progression in single animal cells"
C.J. Cattin, M. Düggelin, D. Martinez-Martin, Ch. Gerber, D.J. Muller, M.P. Stewart,
Proc. Natl. Acad. Sci. U.S.A. 112, 11258-11263 (2015).
172. "Piezoresistive Membrane Surface Stress Sensors for Characterization of Breath Samples of Head and Neck Cancer Patients"
H.P. Lang, F. Loizeau, A. Hiou-Feige, J.-P. Rivals, P. Romero, T. Akiyama, Ch. Gerber, E. Meyer
Sensors 2016, 16, 1149.
173. "Fast Diagnostics of BRAF Mutations in Biopsies from Malignant Melanoma"
F. Huber, H.P. Lang, K. Glatz, D. Rimoldi, E. Meyer, Ch. Gerber
Nano Letters, 16, 5373-5377 (2016).
174. "Nano on reflection: A number of experts from different areas of nanotechnology describe how the field has evolved in the last ten years,"
J.R. Bursten, M.C. Roco, C. Mihail, W. Yang, Y.L. Zhao, C.Y. Chen, K. Savolainen, Ch. Gerber, K. Kataoka, Y. Krishnan, H. Bayley, L. Nazar, S. Milana, L. Vandersypen, P.S. Weiss, J. Schummer,
Nat. Nanotechnol. 11, 830 (2016).
175. "Atomic force microscopy-based characterization and design of biointerfaces"
D. Alsteens, H. E. Gaub, R. Newton, M. Pfreundschuh, Ch. Gerber and D. J. Müller
Nat. Rev. Materials, 2, Art. no. 17008, 1-16 (2017).
176. "Imaging modes of atomic force microscopy for application in molecular and cell biology"
Y. F. Dufrêne, T. Ando, R. Garcia, D. Alsteens, D. Martinez-Martin, A. Engel, Ch. Gerber and D. J. Müller Nat. Nanotechnology 12 (2017), DOI: 10.1038/NNANO.2017.45

177. "Inertial picobalance reveals fast mass fluctuations in mammalian cells" D. Martinez-Martin, G. Fläschner, B. Gaub, S. Martin, R. Newton, C. Beerli, J. Mercer, Ch. Gerber, D.J. Müller. *Nature* 550, 500–505 (26 October 2017), doi:10.1038/nature24288